Chapter 17: Free-Space Management

Adam Disney

THE UNIVERSITY OF

TENNESSEE

KNOXVILLE

Crux: How To Manage Free Space

Crux: How To MANAGE FREE SPACE
How should free space be managed, when ﬂaﬁsfymg variable-sized re-
quests? What strategies can be used to minimize aﬂ\mﬁlﬁﬂﬂ? What
are the time and space overheads of alternate appro

Assumptions

* Malloc()

— Takes a single argument, size
— Returns void *

* Free()

— Takes a single argument, pointer returned by malloc()
— This means the library must be able to solve memory size

* Need a data structure to keep up with free space.
* Focus on external fragmentation

* No compaction of free space

* Heap is a single fixed size

Low-level Mechanisms - Splitting

- When we malloc() for less than a free chunk of memory, we split it.
Suppose we ask for 1 byte.

| free | used | free |
0 10 20 30

addr:0 addr:20 addr:0 addr:21
head —> len:10 — len:10 — NULL hEﬂd E— len:10 —> len:9 — NULL

TENNESSEE @ §

KNOXVILLE

Low-level Mechanisms — Coalescing

* When we free() memory, we might coalesce the free space.

addr:0 addr:20
head = (o190 — Jen:10 — > NULL

head —» addr:10 — addr:0 —» addr:20 —» NULL

len:10 len:10 len:10
head —» 39900 —» NULL
| free | wused | free |
0 10 20 30

TENNESSEE @ §

KNOXVILLE

Low-level Mechanisms
Tracking The Size Of Allocated Regions

* When free() is called, how does the
library know the size?

* Magic is to detect corruption quickly.

* Notice this means a malloc(n) needs to
find a chunk of n + sizeof(header)
bytes.

ptr

hptr

ptr

" The header used by malloc library

- The 20 bytes returned to caller

Figure 17.1: An Allocated Region Plus Header

>

>

size: 20

magic: 1234567

-~ The 20 bytes returned to caller

Figure 17.2: Specific Contents Of The Header

Low-level Mechanisms
Embedding A Free List

* Since the library is the one implementing malloc()/free(), it cannot use
them itself! Instead, it will build the list inside the free space itself.

typedef struct _ node_t {

int size;
struct _ node_t =*next;
} node_t;

// mmap () returns a pointer to a chunk of free space

node_t xhead = mmap (NULL, 4096, PROT_READ |PROT_WRITE,
MAP ANON|MAP_PRIVATE, -1, 0);

head->size = 4096 - sizeof (node_t);

head=->next = NULL;

THE UNIVERSITY OF

TENNESSEE

KNOXVILLE

Low-level Mechanisms
Embedding A Free List

 Since the library is the one implementing malloc()/free(), it cannot use
them itself! Instead, it will build the list inside the free space itself.

head > [:rirtual address: 16KB]
size: 4088 eader: size field
next: 0| header: next field (NULL is 0)
the rest of the 4KB chunk

Figure 17.3: A Heap With One Free Chunk

TENNESSEE @ §

KNOXVILLE

Low-level Mechanisms
Embedding A Free List (Malloc)

[virtual address: 16KB]

size: 100
magic: 1234567
ptr > "1
. = The 100 bytes now allocated
head > [_\l.rirtual address: 16KB]
size: 4088 eader: size field
head > — A
next: 0| header: next field (NULL is 0) iZE sl
7 next: 0
" = the rest of the 4KB chunk
e = The free 3980 byte chunk

Figure 17.3: A Heap With One Free Chunk
Figure 17.4: A Heap: After One Allocation

THE UNIVERSITY OF

TENNESSEE @ §

KNOXVILLE

[virtual address: 16KB]
size: 100

e Low-level Mechanisms
| Embedding A Free List (Free)

= 100 bytes still allocated

size: 100
magic: 1234567

sptr >

= 100 bytes still allocated
(but about to be freed)

size: 100
magic: 1234567

= 100-bytes still allocated

head >
size: 3764

next: 0

The free 3764-byte chunk

THE UNIVERSITY OF

TENNESSEE @ §

KNOXVILLE

Figure 17.5: Free Space With Three Chunks Allocated

spir

head

size: 100

magic: 1234567

size: 100

magic: 1234567
>

size: 100

magic: 1234567
»

size: 3764

next: 0]

[virtual address: 16KEB]

100 bytes still allocated

100 bytes still allocated

(but about to be freed)

100-bytes still allocated

The free 3764-byte chunk

Figure 17.5: Free Space With Three Chunks Allocated

Low-level
Mechanisms

Embedding A .. _.
Free List (Free) .. _.

[virtual address: 16KB]

100 bytes still allocated

(now a free chunk of memory)

100-bytes still allocated

size: 100
magic: 1234567
size: 100
next: 16708
size: 100
magic: 1234567
size: 3764
next: 0

The free 3764-byte chunk

Figure 17.6: Free Space With Two Chunks Allocated

THE UNIVERSITY OF

TENNESSEE @ §

KNOXVILLE

Low-level Mechanisms
Embedding A Free List (Free)

head —»

[virtual address: 16KB]

(now free)

(now free)

(now free)

size: 100 | «
next: 16492
size: 100 |-
next: 16708
size: 100
next: 16384
size: 3764 | «
next: 0

The free 3764-byte chunk

Figure 17.7: A Non-Coalesced Free List

THE UNIVERSITY OF

TENNESSEE @ §

KNOXVILLE

Low-level Mechanisms
Growing The Heap

» What if the heap runs out of space?
— Ask the OS to extend the heap (sbrk())

Basic Strategies (Policies)
Best Fit

» Search the list for the smallest chunk that can fulfill the request.
« Can be expensive to exhaustive search for the correct free chunk.

Basic Strategies (Policies)
Worst Fit

« Search the list for the largest chunk that can fulfill the request.
— This tries to leave big chunks free instead of lots of small chunks.

« Can be expensive to exhaustive search for the correct free chunk.

Basic Strategies (Policies)
First Fit

* Pick the first chunk that can service the request.
* This is fast but can pollute the free list with small objects.

 Often paired with address-based ordering of the list to make
coalescing easier and reduce fragmentation.

Basic Strategies (Policies)
Next Fit

* Instead of searching from the beginning of the list every time, we
remember where we last looked in the list.

* Now from this point we pick the first chunk that fits.

 This avoids splintering the beginning of the list while giving similar
performance to first fit.

TENNESSEE @ §

KNOXVILLE

Other Approaches (Policies)
Segregated Lists

* If a particular application has one or a few popular-sized requests,
keep a list just to manage objects of that size.

» Other requests go to a general allocator.

* Benefits:
— Allocating the popular size is quick and easy.
— Fragmentation much less of a concern.

* |[ssues:
— How much memory do we dedicate to this pool of memory?

TENNESSEE @ §

KNOXVILLE

Other Approaches (Policies)
Segregated Lists

- Slab allocator:
— Designed for Solaris kernel

— Object caches made at boot up for common kernel structures
* Locks, inodes, etc.

— When a cache runs low, it asks for more memory from the general allocator.
(slab of memory)

— When the reference count to the slab hits zero, the general allocator can
reclaim it.

— Can also do something like leaving free objects in an initialized state.

TENNESSEE @ §

KNOXVILLE

Other Approaches (Policies)
Buddy Allocation

 Since coalescing is critical, some approaches are designed around
making it simple.

- Binary buddy allocator views free memory as one big space of size 2N

* On allocation request, recursively divide the free space in half until we
reach the smallest size that will service the request.

* Internal fragmentation is an issue because it can only give out a
power-of-two-sized block.

Other Approaches (Policies)

Buddy Allocation
64 KB
‘ I
32 KB 32 KB
: l
16 KB 16 KB

8 KB

Figure 17.8: Example Buddy-managed Heap

TENNESSEE @ §

KNOXVILLE

Other Approaches (Policies)
Buddy Allocation

 When a block is freed, the allocator checks whether the "buddy" is
free. If so, it coalesces the two then recursively checks if that block's
"buddy" is also free continuing until a "buddy" is found to be in use.

	Cover/Divider
	Slide 1: Chapter 17: Free-Space Management

	Content Layouts
	Slide 2: Crux: How To Manage Free Space
	Slide 3: Assumptions
	Slide 4: Low-level Mechanisms - Splitting
	Slide 5: Low-level Mechanisms – Coalescing
	Slide 6: Low-level Mechanisms Tracking The Size Of Allocated Regions
	Slide 7: Low-level Mechanisms Embedding A Free List
	Slide 8: Low-level Mechanisms Embedding A Free List
	Slide 9: Low-level Mechanisms Embedding A Free List (Malloc)
	Slide 10: Low-level Mechanisms Embedding A Free List (Free)
	Slide 11: Low-level Mechanisms Embedding A Free List (Free)
	Slide 12: Low-level Mechanisms Embedding A Free List (Free)
	Slide 13: Low-level Mechanisms Growing The Heap
	Slide 14: Basic Strategies (Policies) Best Fit
	Slide 15: Basic Strategies (Policies) Worst Fit
	Slide 16: Basic Strategies (Policies) First Fit
	Slide 17: Basic Strategies (Policies) Next Fit
	Slide 18: Other Approaches (Policies) Segregated Lists
	Slide 19: Other Approaches (Policies) Segregated Lists
	Slide 20: Other Approaches (Policies) Buddy Allocation
	Slide 21: Other Approaches (Policies) Buddy Allocation
	Slide 22: Other Approaches (Policies) Buddy Allocation

