
Chapter 17: Free-Space Management
Adam Disney



Crux: How To Manage Free Space



Assumptions

• Malloc()
— Takes a single argument, size

— Returns void *

• Free()
— Takes a single argument, pointer returned by malloc()

— This means the library must be able to solve memory size

• Need a data structure to keep up with free space.

• Focus on external fragmentation

• No compaction of free space

• Heap is a single fixed size



Low-level Mechanisms - Splitting

• When we malloc() for less than a free chunk of memory, we split it. 
Suppose we ask for 1 byte.



Low-level Mechanisms – Coalescing

• When we free() memory, we might coalesce the free space.



Low-level Mechanisms
Tracking The Size Of Allocated Regions

• When free() is called, how does the 
library know the size?

• Magic is to detect corruption quickly.

• Notice this means a malloc(n) needs to 
find a chunk of n + sizeof(header) 
bytes.



Low-level Mechanisms
Embedding A Free List

• Since the library is the one implementing malloc()/free(), it cannot use 
them itself! Instead, it will build the list inside the free space itself.



Low-level Mechanisms
Embedding A Free List

• Since the library is the one implementing malloc()/free(), it cannot use 
them itself! Instead, it will build the list inside the free space itself.



Low-level Mechanisms
Embedding A Free List (Malloc)



Low-level Mechanisms
Embedding A Free List (Free)



Low-level 
Mechanisms
Embedding A 

Free List (Free)



Low-level Mechanisms
Embedding A Free List (Free)



Low-level Mechanisms
Growing The Heap

• What if the heap runs out of space?
— Ask the OS to extend the heap (sbrk())



Basic Strategies (Policies)
Best Fit

• Search the list for the smallest chunk that can fulfill the request.

• Can be expensive to exhaustive search for the correct free chunk.



Basic Strategies (Policies)
Worst Fit

• Search the list for the largest chunk that can fulfill the request.
— This tries to leave big chunks free instead of lots of small chunks.

• Can be expensive to exhaustive search for the correct free chunk.



Basic Strategies (Policies)
First Fit

• Pick the first chunk that can service the request.

• This is fast but can pollute the free list with small objects.

• Often paired with address-based ordering of the list to make 
coalescing easier and reduce fragmentation.



Basic Strategies (Policies)
Next Fit

• Instead of searching from the beginning of the list every time, we 
remember where we last looked in the list.

• Now from this point we pick the first chunk that fits.

• This avoids splintering the beginning of the list while giving similar 
performance to first fit.



Other Approaches (Policies)
Segregated Lists

• If a particular application has one or a few popular-sized requests, 
keep a list just to manage objects of that size.

• Other requests go to a general allocator.

• Benefits:
— Allocating the popular size is quick and easy.

— Fragmentation much less of a concern.

• Issues:
— How much memory do we dedicate to this pool of memory?



Other Approaches (Policies)
Segregated Lists

• Slab allocator:
— Designed for Solaris kernel

— Object caches made at boot up for common kernel structures
• Locks, inodes, etc.

— When a cache runs low, it asks for more memory from the general allocator. 
(slab of memory)

— When the reference count to the slab hits zero, the general allocator can 
reclaim it.

— Can also do something like leaving free objects in an initialized state.



Other Approaches (Policies)
Buddy Allocation

• Since coalescing is critical, some approaches are designed around 
making it simple.

• Binary buddy allocator views free memory as one big space of size 2N

• On allocation request, recursively divide the free space in half until we 
reach the smallest size that will service the request.

• Internal fragmentation is an issue because it can only give out a 
power-of-two-sized block.



Other Approaches (Policies)
Buddy Allocation



Other Approaches (Policies)
Buddy Allocation

• When a block is freed, the allocator checks whether the "buddy" is 
free. If so, it coalesces the two then recursively checks if that block's 
"buddy" is also free continuing until a "buddy" is found to be in use.


	Cover/Divider
	Slide 1: Chapter 17: Free-Space Management

	Content Layouts
	Slide 2: Crux: How To Manage Free Space
	Slide 3: Assumptions
	Slide 4: Low-level Mechanisms - Splitting
	Slide 5: Low-level Mechanisms – Coalescing
	Slide 6: Low-level Mechanisms Tracking The Size Of Allocated Regions
	Slide 7: Low-level Mechanisms Embedding A Free List
	Slide 8: Low-level Mechanisms Embedding A Free List
	Slide 9: Low-level Mechanisms Embedding A Free List (Malloc)
	Slide 10: Low-level Mechanisms Embedding A Free List (Free)
	Slide 11: Low-level Mechanisms Embedding A Free List (Free)
	Slide 12: Low-level Mechanisms Embedding A Free List (Free)
	Slide 13: Low-level Mechanisms Growing The Heap
	Slide 14: Basic Strategies (Policies) Best Fit
	Slide 15: Basic Strategies (Policies) Worst Fit
	Slide 16: Basic Strategies (Policies) First Fit
	Slide 17: Basic Strategies (Policies) Next Fit
	Slide 18: Other Approaches (Policies) Segregated Lists
	Slide 19: Other Approaches (Policies) Segregated Lists
	Slide 20: Other Approaches (Policies) Buddy Allocation
	Slide 21: Other Approaches (Policies) Buddy Allocation
	Slide 22: Other Approaches (Policies) Buddy Allocation


