
Chapter 16: Segmentation
Adam Disney



Crux: How To Support A Large Address Space



Segmentation: Generalized Base/Bounds

• Instead of a single base/bounds pair, why not have a pair per logical 
segment of the address space?

• Let's split the 3 parts of the address space into segments and we can 
place them individually into physical memory.

• This avoids wasting the space in-between.



Segmentation: Generalized 
Base/Bounds



Address Translation



Which Segment Are We Referring To?

• Explicit approach
— Use top few bits of the virtual address to determine which segment we're in.



Which Segment Are We Referring To?

• Explicit approach issues
— With only 3 segments, we're wasting virtual address space with two bits.

— Alternatively, we could make the code+heap as a single segment and use one bit.

— Segments are limited in size by the offset field



Which Segment Are We Referring To?

• Implicit approach
— Hardware determines segment by noticing how the address was formed.

— Program counter address -> code segment

— Address based off stack pointer -> stack segment

— Any other -> heap segment



What About The Stack?

• Our current approach doesn't work for stack because it grows 
backwards!

• Need some extra hardware support to mark segment direction



Address Translation

?



Support for Sharing

• System designers realized they could save space by sharing 
segments.
— We still use this concept today with shared libraries.

• Need additional hardware support to mark segments 
with RWX privileges.



Fine-grained vs Coarse-grained Segmentation

• We've been talking about coarse-grained (large) segments.

• Some systems have used fine-grained (small) segments.
— This requires a segment table in memory.

— The idea was that the OS could learn which segments are in use and utilize 
main memory better.



OS Support

• OS must save segment registers 
on a context switch.

• OS must allow segments to 
grow or even shrink.
— Calling malloc() might need to allocate 

more space in the heap segment.

• OS must manage free space in 
physical memory.
— We end up with little holes of free 

space. Often, they're useless. This is 
called external fragmentation.



Compact Physical Memory

• We could compact the physical memory, but this is expensive.

• Also makes requests to grow segments hard to serve.

• We could use various free-list management algorithms:
— Best-fit

— Worst-fit

— First-fit

— Buddy algorithm

• Unfortunately, we never eliminate external fragmentation.


	Content Layouts
	Slide 1: Chapter 16: Segmentation
	Slide 2: Crux: How To Support A Large Address Space
	Slide 3: Segmentation: Generalized Base/Bounds
	Slide 4: Segmentation: Generalized Base/Bounds
	Slide 5: Address Translation
	Slide 6: Which Segment Are We Referring To?
	Slide 7: Which Segment Are We Referring To?
	Slide 8: Which Segment Are We Referring To?
	Slide 9: What About The Stack?
	Slide 10: Address Translation
	Slide 11: Support for Sharing
	Slide 12: Fine-grained vs Coarse-grained Segmentation
	Slide 13: OS Support
	Slide 14: Compact Physical Memory


