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Crux: How To Support A Large Address Space

THE CRUX: HOwW TO SUPPORT A LARGE ADDRESS SPACE
How do we support a large address space with (potentially) a lot of
free space between the stack and the heap? Note that in our examples,
with tiny (pretend) address spaces, the waste doesn’t seem too bad. Imag-
ine, however, a 32-bit address space (4 GB in size); a typical program will
only use megabytes of memory, but still would demand that the entire
address space be resident in memory.




Segmentation: Generalized Base/Bounds

* Instead of a single base/bounds pair, why not have a pair per logical
segment of the address space?

* Let's split the 3 parts of the address space into segments and we can
place them individually into physical memory.

* This avoids wasting the space in-between.
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Which Segment Are We Referring To?

» Explicit approach
— Use top few bits of the virtual address to determine which segment we're in.




Which Segment Are We Referring To?

» Explicit approach issues
— With only 3 segments, we're wasting virtual address space with two bits.
— Alternatively, we could make the code+heap as a single segment and use one bit.
— Segments are limited in size by the offset field
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Which Segment Are We Referring To?

* Implicit approach
— Hardware determines segment by noticing how the address was formed.
— Program counter address -> code segment
— Address based off stack pointer -> stack segment
— Any other -> heap segment




What About The Stack?

* Our current approach doesn't work for stack because it grows
backwards!

* Need some extra hardware support to mark segment direction

Segment Base Size (max4K) Grows Positive?

Codeng 32K 2K 1
Heapm 34K 3K 1
Stack 11 28K 2K 0

Figure 16.4: Segment Registers (With Negative-Growth Support)
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Support for Sharing

« System designers realized they could save space by sharing
segments.

— We still use this concept today with shared libraries.

* Need additional hardware support to mark segments
with RWX privileges.

Segment Base Size (max4K) Grows Positive? Protection

Codeqy 32K 2K 1 Read-Execute
HE&Pm 34K 3K 1 Read-Write
Stack 11 28K 2K 0 Read-Write

Figure 16.5: Segment Register Values (with Protection)




Fine-grained vs Coarse-grained Segmentation

* We've been talking about coarse-grained (large) segments.

« Some systems have used fine-grained (small) segments.
— This requires a segment table in memory.

— The idea was that the OS could learn which segments are in use and utilize
main memory better.
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Compact Physical Memory

* We could compact the physical memory, but this is expensive.
» Also makes requests to grow segments hard to serve.
* We could use various free-list management algorithms:

— Best-fit

— Worst-fit

— First-fit

— Buddy algorithm

» Unfortunately, we never eliminate external fragmentation.
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