Chapter 16: Segmentation

Adam Disney

THE UNIVERSITY OF

TENNESSEE

KNOXVILLE

Crux: How To Support A Large Address Space

THE CRUX: HOwW TO SUPPORT A LARGE ADDRESS SPACE
How do we support a large address space with (potentially) a lot of
free space between the stack and the heap? Note that in our examples,
with tiny (pretend) address spaces, the waste doesn’t seem too bad. Imag-
ine, however, a 32-bit address space (4 GB in size); a typical program will
only use megabytes of memory, but still would demand that the entire
address space be resident in memory.

Segmentation: Generalized Base/Bounds

* Instead of a single base/bounds pair, why not have a pair per logical
segment of the address space?

* Let's split the 3 parts of the address space into segments and we can
place them individually into physical memory.

* This avoids wasting the space in-between.

TENNESSEE @ §

KNOXVILLE

OKB

Segmentation: Generalized
Base/Bounds

16KB

32KB

Seement Base Size 48KB
_C?Eﬂe 32K 2K
Heap MK 3K

Stack 28K 2K 64KB

Operating System

(not in use)
t

Stack

(not in use)

Code

Heap

L]

(not in use)

Figure 16.3: Segment Register Values Figure 16.2: Placing Segments In Physical Memory

TENNESSEE @ §

KNOXVILLE

OKB
OKB 1KB Program Code
[| . KB
3KB
Address Translation Operang Sysiem
16KB 4KB
(not il;t use) o8 oa
Stack 6KB
(not in use) B
32KB Code l
_Eéeﬁ'nent Base Size &
e 32K 2K
HE&P 34K 3K 48KB \ (free)
Stack 28K 2K =t
Figure 16.3: Segment Register Values
64KB I
14KB
Figure 16.2: Placing Segments In Physical Mer 15KB
Stack

16KB

Figure 16.1: An Address Space (Again)

THE UNIVERSITY OF

TENNESSEE @ §

KNOXVILLE

Which Segment Are We Referring To?

» Explicit approach
— Use top few bits of the virtual address to determine which segment we're in.

Which Segment Are We Referring To?

» Explicit approach issues
— With only 3 segments, we're wasting virtual address space with two bits.
— Alternatively, we could make the code+heap as a single segment and use one bit.
— Segments are limited in size by the offset field

13121110 9 8 7 6 5

T | —
Segment Offset

Which Segment Are We Referring To?

* Implicit approach
— Hardware determines segment by noticing how the address was formed.
— Program counter address -> code segment
— Address based off stack pointer -> stack segment
— Any other -> heap segment

What About The Stack?

* Our current approach doesn't work for stack because it grows
backwards!

* Need some extra hardware support to mark segment direction

Segment Base Size (max4K) Grows Positive?

Codeng 32K 2K 1
Heapm 34K 3K 1
Stack 11 28K 2K 0

Figure 16.4: Segment Registers (With Negative-Growth Support)

TENNESSEE @ §

KNOXVILLE

0KB
OKB 1KB Program Code
[| . 2KB
| 3KB
Address Translation R
16KB 4KB
(not il;t use) o8 ea
Stack 6KB
(not in use) B
32KB —
Heap l
Segment Base Size (max4K) Grows Positive? i
Codeqq 32K 2K 1
Stacki, 28K 2K 0 (not in use)
Figure 16.4: Segment Registers (With Negative-Growth Support)
64KB I
14KB
Figure 16.2: Placing Segments In Physical Memory 1sks
Stack

16KB

Figure 16.1: An Address Space (Again)

THE UNIVERSITY OF

TENNESSEE @ §

KNOXVILLE

Support for Sharing

« System designers realized they could save space by sharing
segments.

— We still use this concept today with shared libraries.

* Need additional hardware support to mark segments
with RWX privileges.

Segment Base Size (max4K) Grows Positive? Protection

Codeqy 32K 2K 1 Read-Execute
HE&Pm 34K 3K 1 Read-Write
Stack 11 28K 2K 0 Read-Write

Figure 16.5: Segment Register Values (with Protection)

Fine-grained vs Coarse-grained Segmentation

* We've been talking about coarse-grained (large) segments.

« Some systems have used fine-grained (small) segments.
— This requires a segment table in memory.

— The idea was that the OS could learn which segments are in use and utilize
main memory better.

Not Compacted Compacted

0KB 0KB
OS Support | |
8KB Operating System 8KB Operating System
. 16KB 16KB
+ OS must save segment registers (not in use)
on a context switch. 24KB 24KB
Allocated Allocated
- OS must allow segments to 10KE - 1oKE oo
grow or even shrink. i:'l‘ X :‘3:}
ocale
— Calling malloc() might need to allocate “%%® 40KB
more space in the heap segment. 48KB 48KB
. (not i :
- OS must manage free space in - N . (notin use)
physical memory. " Allocated N
— We end up with little holes of free B64KB 64KB
space. Often, they're useless. This is _
called external fragmentation_ FlgllI‘E 16.6: Nnn-mmpacted and CIJIIIPEEfEd Memory

THE UNIVERSITY OF

TENNESSEE @ §

KNOXVILLE

Compact Physical Memory

* We could compact the physical memory, but this is expensive.
» Also makes requests to grow segments hard to serve.
* We could use various free-list management algorithms:

— Best-fit

— Worst-fit

— First-fit

— Buddy algorithm

» Unfortunately, we never eliminate external fragmentation.

TENNESSEE @ §

KNOXVILLE

	Content Layouts
	Slide 1: Chapter 16: Segmentation
	Slide 2: Crux: How To Support A Large Address Space
	Slide 3: Segmentation: Generalized Base/Bounds
	Slide 4: Segmentation: Generalized Base/Bounds
	Slide 5: Address Translation
	Slide 6: Which Segment Are We Referring To?
	Slide 7: Which Segment Are We Referring To?
	Slide 8: Which Segment Are We Referring To?
	Slide 9: What About The Stack?
	Slide 10: Address Translation
	Slide 11: Support for Sharing
	Slide 12: Fine-grained vs Coarse-grained Segmentation
	Slide 13: OS Support
	Slide 14: Compact Physical Memory

