Chapter 15: Address Translation

Adam Disney

THE UNIVERSITY OF

TENNESSEE

KNOXVILLE

Crux: How To Efficiently And Flexibly Virtualize Memory

THE CRUX:
How ToO EFFICIENTLY AND FLEXIBLY VIRTUALIZE MEMORY
How can we build an efficient virtualization of memory? How do
we provide the flexibility needed by applications? How do we maintain
control over which memory locations an application can access, and thus

ensure that application memory accesses are properly restricted? How
do we do all of this efficiently?

Initial Assumptions

- User's address space is placed contiguously in physical memory

» User's address space fits in physical memory
« Users' address spaces are of equal size
* These are completely unrealistic but simplifies our model

OKB 1 25 [movi 0x0(7oebx) e
132|addl 0x03, Yeeax
1KB 135|movl %eax, Dx0|Yeebx)
Program Code
. 2KB
Need for Translation w | e
4KB
OKB l
Operating System
16KE
(not in use) (oo
e DI\ _ ¢
==l
o
(allocated but not in use) %
1
48KB e 43 I
(0
14KB
(not in use)
15KB 3000
Stack
64KB 16KB
Figure 15.2: Physical Memory with a Single Relocated Process Figure 15.1: A Process And Its Address Space

THE UNIVERSITY OF

TENNESSEE @ §

KNOXVILLE

Dynamic (Hardware-based) Relocation

- Base and bounds (dynamic relocation)
— Two hardware reqisters, base and bounds (beginnings of MMU)

* Programs assume they're loaded at address 0x0

* When the OS places the program in memory, it sets the base/bounds
for the program.

* Any virtual address provided is translated to physical with a simple

formula.
— Physical address = virtual address + base

» Bounds register prevents process from accessing outside its range

OKB 1 25 [movi 0x0(7oebx) e
132|addl 0x03, Yeeax
1KB 135|movl %eax, Dx0|Yeebx)
Program Code
. 2KB
Need for Translation wo | o
4KB
0KB l
Operating System
16KB
(not in use) (oo
e DI\ _ ¢
==l
(48
(allocated but not in use) %
1
48KB e 43 I
(1
14KB
(not in use)
15KB |3000
Stack
64KB 16KB
Figure 15.2: Physical Memory with a Single Relocated Process Figure 15.1: A Process And Its Address Space

THE UNIVERSITY OF

TENNESSEE @ §

KNOXVILLE

Hardware Support So Far

Hardware Requirements Notes

Privileged mode Needed to prevent user-mode processes
from executing privileged operations

Base /bounds registers Need pair of registers per CPU to support

address translation and bounds checks
Ability to translate virtual addresses Circuitry to do translations and check

and check if within bounds limits; in this case, quite simple
Privileged instruction(s) to OS must be able to set these values
update base/bounds before letting a user program run
Privileged instruction(s) to register OS must be able to tell hardware what
exception handlers code to run if exception occurs
Ability to raise exceptions When processes try to access privileged

instructions or ﬂuf-ﬂf-bﬂu nds menory

Figure 15.3: Dynamic Relocation: Hardware Requirements

THE UNIVERSITY OF

TENNESSEE @ §

KNOXVILLE

Operating System Issues

* Needs to find space for new processes
— Given our current constraints, this is easy
— Variable sized address spaces would make this more complicated

* Needs to track free space
— When a process is created/terminated, remove/add free space

 Extra steps in context switch
— Now we must save and restore base/bounds

» Exception handlers
— MMU says program tried to access out of bounds. What do we do?

TENNESSEE @ §

KNOXVILLE

	Content Layouts
	Slide 1: Chapter 15: Address Translation
	Slide 2: Crux: How To Efficiently And Flexibly Virtualize Memory
	Slide 3: Initial Assumptions
	Slide 4: Need for Translation
	Slide 5: Dynamic (Hardware-based) Relocation
	Slide 6: Need for Translation
	Slide 7: Hardware Support So Far
	Slide 8: Operating System Issues

