
Chapter 15: Address Translation
Adam Disney



Crux: How To Efficiently And Flexibly Virtualize Memory



Initial Assumptions

• User's address space is placed contiguously in physical memory

• User's address space fits in physical memory

• Users' address spaces are of equal size

• These are completely unrealistic but simplifies our model



Need for Translation



Dynamic (Hardware-based) Relocation

• Base and bounds (dynamic relocation)
— Two hardware registers, base and bounds (beginnings of MMU)

• Programs assume they're loaded at address 0x0

• When the OS places the program in memory, it sets the base/bounds 
for the program.

• Any virtual address provided is translated to physical with a simple 
formula.
— Physical address = virtual address + base

• Bounds register prevents process from accessing outside its range



Need for Translation

?



Hardware Support So Far



Operating System Issues

• Needs to find space for new processes
— Given our current constraints, this is easy

— Variable sized address spaces would make this more complicated

• Needs to track free space
— When a process is created/terminated, remove/add free space

• Extra steps in context switch
— Now we must save and restore base/bounds

• Exception handlers
— MMU says program tried to access out of bounds. What do we do?


	Content Layouts
	Slide 1: Chapter 15: Address Translation
	Slide 2: Crux: How To Efficiently And Flexibly Virtualize Memory
	Slide 3: Initial Assumptions
	Slide 4: Need for Translation
	Slide 5: Dynamic (Hardware-based) Relocation
	Slide 6: Need for Translation
	Slide 7: Hardware Support So Far
	Slide 8: Operating System Issues


