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Figure 13.1: Operating Systems: The Early Days
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Multiprogramming and Time Sharing

* Multiprogramming:
— Multiple processes were ready to run, and we wanted to maximize CPU usage
because machines were very expensive.
 Time Sharing:
— Realized limitations of batch computing, particularly on programmers.
— Interactivity became important

* https://history-computer.com/dec-pdp-11-computer/
* https://en.wikipedia.org/wiki/PDP-11

TENNESSEE @ §

KNOXVILLE



https://history-computer.com/dec-pdp-11-computer/
https://en.wikipedia.org/wiki/PDP-11

Time Sharing

* One way to implement the context switch (given the model from
Figure 13.1) is to save/restore all state, including all physical memory,
to/from disk.

* This is brutally slow especially as memory grows, thus we want to
leave processes in memory and only save/load the register-level state
which is fast.




Time Sharing

* One way to implement the context switch (given the model from
Figure 13.1) is to save/restore all state, including all physical memory,
to/from disk.

* This is brutally slow especially as memory grows, thus we want to
leave processes in memory and only save/load the register-level state
which is fast.

» With multiple programs in memory, protection becomes an important
ISsue.
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Figure 13.2: Three Processes: Sharing Memory
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The Address Space

* We need an easy to use abstraction of physical memory called
an address space.

* The address space of a process contains all the memory state.
— Code, stack, heap, others we're going to ignore for now
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Figure 13.3: An Example Address Space
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Virtual Memory Goals

 Transparency — Programs behave as if they own the physical memory.
- Efficiency - Time & Space

* Protection - Processes should not be able to affect the OS or other
Processes

THE CRUX: HOW TO VIRTUALIZE MEMORY
How can the OS build this abstraction of a private, potentially large

address space for multiple running processes (all sharing memory) on
top of a single, physical memory?




Next Time...

* Mechanisms — Hardware and OS support
» Policies — How to manage free space and paging
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