Chapter 13: Address Spaces

Adam Disney

THE UNIVERSITY OF

TENNESSEE

KNOXVILLE



0KB
Code, duta, 10)
Early Systems icode, deia, €
64KB
* OS was just a library of functions.
* A single program used the rest of
memory.
Current Program
(code, data, etc.)
max

Figure 13.1: Operating Systems: The Early Days

THE UNIVERSITY OF

TENNESSEE

KNOXVILLE



Multiprogramming and Time Sharing

* Multiprogramming:
— Multiple processes were ready to run, and we wanted to maximize CPU usage
because machines were very expensive.
 Time Sharing:
— Realized limitations of batch computing, particularly on programmers.
— Interactivity became important

* https://history-computer.com/dec-pdp-11-computer/
* https://en.wikipedia.org/wiki/PDP-11

TENNESSEE @ §

KNOXVILLE



https://history-computer.com/dec-pdp-11-computer/
https://en.wikipedia.org/wiki/PDP-11

Time Sharing

* One way to implement the context switch (given the model from
Figure 13.1) is to save/restore all state, including all physical memory,
to/from disk.

* This is brutally slow especially as memory grows, thus we want to
leave processes in memory and only save/load the register-level state
which is fast.




Time Sharing

* One way to implement the context switch (given the model from
Figure 13.1) is to save/restore all state, including all physical memory,
to/from disk.

* This is brutally slow especially as memory grows, thus we want to
leave processes in memory and only save/load the register-level state
which is fast.

» With multiple programs in memory, protection becomes an important
ISsue.




0OKB P
Operating em
m m (code, data, etc.)
Time Sharing 041
(free)
128KB
Process C
(code, data, etc.)
192KB
Process B
(code, data, etc.)
256KB
(free)
320KB
Process A
(code, data, etc.)
384KB
(free)
448KB
(free)
512KB

Figure 13.2: Three Processes: Sharing Memory

THE UNIVERSITY OF

TENNESSEE @ §

KNOXVILLE




The Address Space

* We need an easy to use abstraction of physical memory called
an address space.

* The address space of a process contains all the memory state.
— Code, stack, heap, others we're going to ignore for now




OKB

the code segment:
Program Code where instruciions live

The Address Space o | Tapmesse

dynamic data structures
2KB (it grows positively)

(free)

(it grows negatwelrl
the stack segmen
15KB contains Itgcal varillahlas
arguments to routines,
Stack return values, etc.

16KB

Figure 13.3: An Example Address Space

THE UNIVERSITY OF

TENNESSEE @ §

KNOXVILLE




OKB

the code segment:
Program Code | \here instructions live
1KB
The Address Space !
eap contains malloc'd data
oKB dynamic data structures
(it grows positively)
0KB _
)
64KB
(free)
128KB
do. data, etc)
192KB (ode, data, etc. (free)
Process B
(code, data, etc.)
256KB
(free)
320KB . ~
I
(code?ggst:, etc.) (it grows HEQEIWEIY]
384KB the stack segmen
(free) 15KB contains Itgctal varillablas
arguments to routines,
448KB Stack r]Eiiatlﬂlrn values, etc.
(free) 16KB
512KB
Figure 13.2: Three Processes: Sharing Memory F igure 13.3: An Emple Address SPEEE

THE UNIVERSITY OF

TENNESSEE @ §

KNOXVILLE




Virtual Memory Goals

 Transparency — Programs behave as if they own the physical memory.
- Efficiency - Time & Space

* Protection - Processes should not be able to affect the OS or other
Processes

THE CRUX: HOW TO VIRTUALIZE MEMORY
How can the OS build this abstraction of a private, potentially large

address space for multiple running processes (all sharing memory) on
top of a single, physical memory?




Next Time...

* Mechanisms — Hardware and OS support
» Policies — How to manage free space and paging




	Cover/Divider
	Slide 1: Chapter 13: Address Spaces

	Content Layouts
	Slide 2: Early Systems
	Slide 3: Multiprogramming and Time Sharing
	Slide 4: Time Sharing
	Slide 5: Time Sharing
	Slide 6: Time Sharing
	Slide 7: The Address Space
	Slide 8: The Address Space
	Slide 9: The Address Space
	Slide 10: Virtual Memory Goals
	Slide 11: Next Time...


