
Chapter 9: Proportional Share Scheduling
Adam Disney



A new metric

• Instead of focusing on turnaround or response time, let's guarantee 
each job gets a certain percentage of CPU time.

• We'll do this with a proportional-share or fair-share scheduler.
— One example is known as lottery scheduling.



Basic Concept: Tickets Represent Your Share

• Tickets represent the share of a resource that an entity should 
receive.

• The percent of the total tickets an entity holds represents 
the percentage of the resource it should receive.

• For example, if process A has 75 tickets and process B has 25 tickets, 
then A should receive 75% of the CPU time and B should receive 25% 
of the CPU time.



Basic Concept: Tickets Represent Your Share

• Lottery scheduling achieves this probabilistically by holding a lottery.

• The idea is to draw a ticket and schedule the process that holds that 
ticket.



Ticket Mechanisms: Ticket Currency

• Ticket currency allows a user to create their own currency.
— There's a global currency and then whatever currency each user creates.

• For example, user A and user B both are given 100 global tickets.
— User A runs two jobs A1 and A2

• A1 and A2 are given 500 "A bucks" each

— User B runs one job B1
• B1 is given 10 "B bucks"

• A1 and A2 each have 50% of the "A bucks" so they each have 50 
global tickets.

• B1 has 100% of the "B bucks" so it has 100 global tickets.



Ticket Mechanisms: Ticket Transfer

• Ticket transfer allows a process to lend tickets to another process.

• Useful in a cooperative setting like client/server running on the same 
machine.
— The client sends a request to the server.

— Since it must wait on the server to finish the request, the client can lend 
its tickets to the server to give it a higher chance of being scheduled.

— When done, the server gives the tickets back to the client.



Ticket Mechanisms: Ticket Inflation

• Ticket inflation allows a process to change the number of tickets it 
owns.
— Really only helpful in a cooperative environment.

• If a process knows it's going to need more CPU time, it can simply 
boost its tickets without coordinating with other processes.



Implementation

• Lottery scheduling is quite simple. It only needs:
— a good random number generator

— a data structure to track processes (e.g., a list)

— a total number of tickets.

• Generate a number, N

• Traverse list of processes adding up their ticket values

• Winner once the total is greater than N



Implementation

• If we run two jobs of the same 
length, how fair is this 
scheduler?

• Randomness affects short 
jobs

• Fairness = job_finish_1 / 
job_finish_2

• We want fairness to be 1



Stride Scheduling

• Why use randomness at all if sometimes it isn't fair?

• Stride Scheduling is a deterministic fair-share scheduler.

• Assign each job a stride which is the inverse in proportion to the 
number of tickets it has.
— Stride = (some large number) / tickets

• Each process has a running pass value starting at 0.

• When a process is scheduled, increment its pass by stride.

• Always schedule the process with the lowest pass breaking ties 
arbitrarily.



Stride Scheduling



Stride Scheduling

• Each process ran exactly in proportion to its tickets so why use lottery 
scheduling at all?
— No global state

— If a new process comes along, what should its pass be?



The Linux Completely Fair Scheduler (CFS)

• Highly efficient and scalable fair-share scheduler.

• Aims to spend very little time making decisions.

• This is important to not waste resources.
— Google datacenter even after aggressive optimization used 5% of the CPU time 

scheduling!

• Reducing overhead is a key goal in modern schedulers.

• Goal is to divide the CPU evenly among all competing processes.

• It does so with a virtual runtime (vruntime)



CFS: Basic Operation

• Each time a process runs, it accumulates vruntime.

• CFS always picks the process with the lowest vruntime.

• CFS varies the time slice size with sched_latency.
— sched_latency represents the largest time slice size possible

— Time slice size is determined simply by sched_latency divided by the number of 
processes running.

• CFS uses min_granularity to prevent the time slice from becoming too 
small.



CFS: Basic Operation



CFS: Niceness

• Niceness adds weighting to the 
time slice calculation.

• Time slice = portion of weight 
all processes running * max 
time slice

• Vruntime = previous vruntime + 
time just ran * weighting based 
on niceness



CFS: Using Red-Black Trees

• A list is inefficient when looking for the lowest vruntime so we use a 
red-black tree keyed on vruntime.

• Why not a heap?



CFS: Dealing With I/O And Sleeping Processes

• When a job wakes up from sleeping or becomes unblocked, it's 
vruntime is set to the maximum of its own vruntime and the minimum 
in the tree.

• This avoids starvation at the cost of not being 
fair to frequently sleeping processes.



CFS: Other Fun

• Of course, there are many other features to tune this scheduler to deal 
with
— Cache performance

— Multiple CPUs

— Large groups of processes


	Cover/Divider
	Slide 1: Chapter 9: Proportional Share Scheduling

	Content Layouts
	Slide 2: A new metric
	Slide 3: Basic Concept: Tickets Represent Your Share
	Slide 4: Basic Concept: Tickets Represent Your Share
	Slide 5: Ticket Mechanisms: Ticket Currency
	Slide 6: Ticket Mechanisms: Ticket Transfer
	Slide 7: Ticket Mechanisms: Ticket Inflation
	Slide 8: Implementation
	Slide 9: Implementation
	Slide 10: Stride Scheduling
	Slide 11: Stride Scheduling
	Slide 12: Stride Scheduling
	Slide 13: The Linux Completely Fair Scheduler (CFS)
	Slide 14: CFS: Basic Operation
	Slide 15: CFS: Basic Operation
	Slide 16: CFS: Niceness
	Slide 17: CFS: Using Red-Black Trees
	Slide 18: CFS: Dealing With I/O And Sleeping Processes
	Slide 19: CFS: Other Fun


