
Chapter 8: Multi-Level Feedback Queue
Adam Disney



Multi-Level Feedback Queue (MLFQ) Goals

• We want to optimize turnaround time, but we don't know how long 
jobs will run.

• We also want the system feel responsive to interactive users, so we 
want to optimize response time as well.



MLFQ: Basic Rules

• We're going to have multiple queues.

• Each is assigned a different priority level.

• When we need to make a scheduling decision, we pick the job with 
the highest priority.

• For jobs in the same priority queue, use Round Robin.



MLFQ: Basic Rules

• Rule 1: if Priority(A) > Priority(B), A runs.

• Rule 2: if Priority(A) = Priority(B), A & B run in RR.



MLFQ: Basic Rules

• The key to MLFQ scheduling lies in how we select priorities for jobs.

• For example, a job that often yields waiting on keyboard input might 
have a high priority because it is obviously interactive.

• MLFQ will learn based on history of observed behavior to make 
decisions.
o For example, if a job keeps releasing control waiting on keyboard input, MLFQ 

might give it a high priority so that it is interactive.

o In contrast, if a job uses the CPU for a long time, reduce its priority.



MLFQ: Basic Rules

• With our current rules, only A & B 
will run and never give C or D any 
CPU time.

• Job priority must change over time!



Attempt #1: How to Change Priority

• Each job is given an allotment. This is the amount of time the job can 
be in a given queue before its priority is reduced. For simplicity, we'll 
assume it's equal to a single time slice.

• Rule 3: When a job enters the system, it is placed at the highest 
priority.

• Rule 4a: If a job uses up an entire time slice while running, its priority 
is reduced.

• Rule 4b: If a job gives up the CPU before the time slice is up, it stays at 
the same priority level.



Example 1: A Single Long-Running Job

• Let's look at a long running 
job in a 3-queue scheduler.

• Starts at the top and quickly 
gets knocked down to the 
bottom.



Example 2: Along Came A Short Job

• We can see how MLFQ tries 
to approximate SJF.

• Assume jobs are short until 
they prove otherwise.



Example 3: What About I/O?

• Interactive jobs will stay at 
highest priority because it is 
likely that it will not use the 
entire time slice before 
blocking on I/O and remain 
at the top priority.



Problems With Our Current MLFQ

• Seems to work well but what can go wrong?



Issue #1: Starvation

• Too many interactive 
jobs will starve long 
running jobs.

• We need a way for 
jobs to increase in 
priority to avoid this.

• (Ignore the right-
side figure for now)



Issue #2: Gaming the Scheduler

• A program could issue I/O or 
yield after 99% of the time slice 
to stay in the top priority queue.



Issue #3: Changing Behavior

• A job's behavior might change over time
— (CPU intensive <-> I/O intensive)

• A job that started non-interactive would not be prioritized well when it 
later became interactive.



Attempt #2: The Priority Boost

• Let's attempt to avoid starvation by boosting priority of jobs.

• Rule 5: After some time period S, move all the jobs in the system to 
the topmost queue.

• This guarantees no starvation.

• Low priority jobs that have become interactive will be treated properly.



Attempt #2: The Priority Boost

• The first job was CPU 
intensive at first but 
became interactive.

• With the priority 
boost, we account for 
this.

• That's two of the 
three issues solved...



Attempt #3: Better Accounting

• Let's try to prevent 
gaming of the scheduler.

• Let's change rule 4

• Rule 4: Once a job uses 
up its time allotment at a 
give level, its priority is 
reduced.



Tuning MLFQ and Other Issues

• Parameterization
— How many queues?

— How big are time slices at each level?

— How often to boost priority?

• This is where understanding your workload is important.

• Scheduler implementations often have extra features like "nice"



MLFQ: Summary

• Rule 1: If Priority(A) > Priority(B), A runs

• Rule 2: If Priority(A) = Priority(B), A & B run in RR fashion using the time 
slice of the given queue

• Rule 3: When a job enters the system, it is placed at the highest priority

• Rule 4: Once a job uses up its time allotment at a given level, its priority 
is reduced

• Rule 5: After some time period S, move all the jobs in the system to the 
topmost queue


	Cover/Divider
	Slide 1: Chapter 8: Multi-Level Feedback Queue

	Content Layouts
	Slide 2: Multi-Level Feedback Queue (MLFQ) Goals
	Slide 3: MLFQ: Basic Rules
	Slide 4: MLFQ: Basic Rules
	Slide 5: MLFQ: Basic Rules
	Slide 6: MLFQ: Basic Rules
	Slide 7: Attempt #1: How to Change Priority
	Slide 8: Example 1: A Single Long-Running Job
	Slide 9: Example 2: Along Came A Short Job
	Slide 10: Example 3: What About I/O?
	Slide 11: Problems With Our Current MLFQ
	Slide 12: Issue #1: Starvation
	Slide 13: Issue #2: Gaming the Scheduler
	Slide 14: Issue #3: Changing Behavior
	Slide 15: Attempt #2: The Priority Boost
	Slide 16: Attempt #2: The Priority Boost
	Slide 17: Attempt #3: Better Accounting
	Slide 18: Tuning MLFQ and Other Issues
	Slide 19: MLFQ: Summary


