Chapter 7: Scheduling Introduction

Adam Disney

THE UNIVERSITY OF

TENNESSEE

KNOXVILLE



Scheduling Policies

* We now understand the mechanisms of running processes...
* Now we need to go into the policies for using the mechanisms.




The Crux of Scheduling

THE CRUX: HOW TO DEVELOP SCHEDULING POLICY
How should we develop a basic framework for thinking about
scheduling policies? What are the key assumptions? What metrics are
important? What basic approaches have been used in the earliest of com-
puter systems?




Workload Assumptions

» Workload — The processes running on the system
* Understanding the workload is critical to building policies.

* Let's make some simplifying (and unrealistic) assumptions
— Each job runs for the same amount of time
— All jobs arrive at the same time
— Once started, each job runs to completion
— All jobs only use the CPU
— The run-time of each job is known

TENNESSEE @ §

KNOXVILLE



Scheduling Metrics

* We need a way to compare scheduling policies
* For now, we'll keep it simple with a single metric Turnaround time

 This is a performance metric and our primary focus for now (there are
other metrics we can use)

* For now, we assume all jobs arrive at 0 thus Turnaround Time =
Completion Time

Tturna,rﬂund — Tﬂ{}mplet-iﬂn - Ta,rr*iﬂai (71)

TENNESSEE @ §

KNOXVILLE



First In, First Out (FIFO)
or First Come, First Served (FCFS)

* Most basic scheduling algorithm.

* Assume jobs A, B, C each take 10 seconds and arrive nearly
simultaneously in the order given.

A B C

I

0 20 40 60 80 100 120
Time




First In, First Out (FIFO)

 Let us drop the assumption that jobs have the same running time
* What kind of workload would make this perform poorly?




First In, First Out (FIFO)

* Let us drop the assumption that jobs have the same running time
» What kind of workload would make this perform poorly?
A B C

0 20 40 60 80 100 120
Time

Figure 7.2: Why FIFO Is Not That Great ‘




First In, First Out (FIFO)

* This problem is generally referred to as the convoy
effect, where short jobs get queued behind a long job.




Shortest Job First (SJF)

* Well, if we're concerned with turnaround time, how about we schedule
the shortest job first!

B C A

0 20 40 60 80 100 120
Time

Figure 7.3: SJF Simple Example ‘




Shortest Job First (SJF)

T1P: THE PRINCIPLE OF SJF

Shortest Job First represents a general scheduling principle that can be
applied to any system where the perceived turnaround time per customer
(or, in our case, a job) matters. Think of any line you have waited in: if
the establishment in question cares about customer satisfaction, it is likely
they have taken SJF into account. For example, grocery stores commonly
have a “ten-items-or-less” line to ensure that shoppers with only a few
things to purchase don’t get stuck behind the family preparing for some
upcoming nuclear winter.




Shortest Job First (SJF)

 That's much better and in fact can be proven to be an optimal solution
given our assumptions!

* What if we relax the assumption that jobs arrive at the same time?
* What can go poorly here?




Shortest Job First (SJF)

» That's much better and in fact can be proven to be an optimal solution
given our assumptions!

* What if we relax the assumption that jobs arrive at the same time?
» What can go poorly here? [BCarive] A 5 C

0 20 40 60 80 100 120
Time

Figure 7.4: SJF With Late Arrivals From B and C




Shortest Time-to-Completion First (STCF)
or Preemptive Shortest Job First (PSJF)

» To address this issue, let's relax the assumption that jobs must be run
to completion.

* This essentially adds preemption to SJF. (Thus, PSJF)

[B,C arrive]
A/B C A

0 20 40 60 80 100 120

Time
Figure 7.5: STCF Simple Example




Shortest Time-to-Completion First (STCF)

 Turns out this also provably optimal given our current assumptions!

— We know job lengths ahead of time
— Jobs only use the CPU
— Only metric is turnaround time

 Early batch computing systems used this type of scheduling.

* Introduction of time-shared machines with users waiting at terminals
changed all that.




New Metric: Response Time

* Now users are typing at a terminal. When they input something, they
want a quick response. (e.g. "Is", "cd")

* Thus, this metric measures the time it takes for the program to be
scheduled for the first time.

TT“ESPDTLSE — Tf’iﬂrstrun — Ta,?"?"ivﬂ.l (72)

TENNESSEE @ §

KNOXVILLE



New Metric: Response Time

* Assume that jobs A, B, and C arrive at time O.
A B C

0 5 10 15 20 25 30

Time
Figure 7.6: SJF Again (Bad for Response Time) ‘




Round Robin (RR)

* Instead of running to completion, we'll run jobs for a time slice.
ABCABCABCABCABC

Il“—“—“ I T | !
0 5 10 15 20

25 30

Time
Figure 7.7: Round Robin (Good For Response Time) ‘




Round Robin (RR)

* Picking the time slice length is very important.

* The shorter we make it, the best response time we have...
» But there's a cost to context switching.

* And what about turnaround time? ABCABCABCABCABC

IIIIII T T 1
0 5 10 15 20 25

30
Time
Figure 7.7: Round Robin (Good For Response Time)

KNOXVILLE




Round Robin (RR)

TIP: AMORTIZATION CAN REDUCE COSTS

The general technique of amortization is commonly used in systems
when there is a fixed cost to some operation. By incurring that cost less
often (i.e., by performing the operation fewer times), the total cost to the
system is reduced. For example, if the time slice is set to 10 ms, and the
context-switch cost is 1 ms, roughly 10% of time is spent context switch-
ing and is thus wasted. If we want to amortize this cost, we can increase
the time slice, e.g., to 100 ms. In this case, less than 1% of time is spent
context switching, and thus the cost of time-slicing has been amortized.




Incorporating 1/O

* Let's relax the assumption that
programs have no |/O

* Overlap of CPU and Disk time
allows us to do better

» Using STCF and treating each
10ms chunk of A as a
separate job, we might do
something like Figure 7.9

CPU

Disk l
0

CPU

Disk

A A A A A B BBUBSB
60 80

Figure 7.8: Poor Use Of Resources

20 40 100 120 140

Time

B ABABAIBATSB

4

20 0O 60 80 100 120 140
Time

A
0

Figure 7.9: Overlap Allows Better Use Of Resources

KNOXVILLE




Next Time...

» We've seen the trade off between response time and turnaround time

» We've seen basic idea of I/O handling

* Realistically, our last assumption is also terrible...we never know how
long a program will run

* Next time we'll look at multi-level feedback queue




	Cover/Divider
	Slide 1: Chapter 7: Scheduling Introduction
	Slide 2: Scheduling Policies
	Slide 3: The Crux of Scheduling
	Slide 4: Workload Assumptions
	Slide 5: Scheduling Metrics
	Slide 6: First In, First Out (FIFO) or First Come, First Served (FCFS)
	Slide 7: First In, First Out (FIFO)
	Slide 8: First In, First Out (FIFO)
	Slide 9: First In, First Out (FIFO)
	Slide 10: Shortest Job First (SJF)
	Slide 11: Shortest Job First (SJF)
	Slide 12: Shortest Job First (SJF)
	Slide 13: Shortest Job First (SJF)
	Slide 14: Shortest Time-to-Completion First (STCF) or Preemptive Shortest Job First (PSJF)
	Slide 15: Shortest Time-to-Completion First (STCF)
	Slide 16: New Metric: Response Time
	Slide 17: New Metric: Response Time
	Slide 18: Round Robin (RR)
	Slide 19: Round Robin (RR)
	Slide 20: Round Robin (RR)
	Slide 21: Incorporating I/O
	Slide 22: Next Time...


