
Chapter 6: Limited Direct Execution
Adam Disney



How To Efficiently Virtualize The CPU w/ 
Control



Performance – Direct Execution

• Let the program run directly on the CPU!

• GGEZ



Direct Execution Issues

• How do we know the program will obey the rules?

• How do we stop the program so we can time share the CPU?



Restricted Operations

• We need hardware support for a "user mode"

• The unrestricted mode is AKA "kernel mode" or "privileged mode".

• Now the process can't break the rules but how do we allow it to run 
privileged instructions? (e.g. read/write disk)



System Calls

• The hardware supports this with the "trap" instruction.

• This instruction allows the process to jump into the kernel while 
switching to kernel mode.

• "Return-from-trap" instruction returns to the user process 
while switching to user mode.

• How does it know where to jump into the kernel?
— We can't allow the user process to jump to an arbitrary location in the kernel!



Trap Table

• During boot up, the OS sets up a trap table.

• This is essentially where the OS defines the system calls it provides.

• The OS simply assigns an integer to each system call and that index 
in the table has a function pointer.

• Now the user can't jump to arbitrary locations in the kernel.



If the user process is running, then the OS is NOT running...so how can it do 
anything at all?

Retaining Control



Cooperative Approach

• Let's assume processes will behave reasonably.

• Wait for the process to make a system call to get into the OS.

• We might have a "yield" system call in this approach.

• Illegal operations will also give the OS control.

• If the user process doesn't behave, our only retort is a reboot.



Non-Cooperative Approach

• We need hardware support for this to work.

• Timer interrupts
— The OS sets up a handler for when a timer interrupt is received.

— The hardware must save enough state to resume the user process.



Non-Cooperative 
Approach



Scheduling

• Now that we're in the kernel via cooperative means or non-
cooperative means, the scheduler must decide if it should context 
switch.

• We'll go into details in the followiung chapters.



Concurrency?

• What if the OS receives an interrupt while handling an interrupt?

• What if the OS receives a timer interrupt during a system call?

• Perhaps we disable interrupts while handling an interrupt.

• Use locks to handle manipulating data structures in the OS.

• There's many chapters ahead on concurrency where we'll get into the 
details.


	Cover/Divider
	Slide 1: Chapter 6: Limited Direct Execution
	Slide 2: How To Efficiently Virtualize The CPU w/ Control
	Slide 3: Performance – Direct Execution
	Slide 4: Direct Execution Issues
	Slide 5: Restricted Operations
	Slide 6: System Calls
	Slide 7: Trap Table
	Slide 8: Retaining Control
	Slide 9: Cooperative Approach
	Slide 10: Non-Cooperative Approach
	Slide 11: Non-Cooperative Approach
	Slide 12: Scheduling
	Slide 13: Concurrency?


