
Chapter 4: Processes
Adam Disney



Processes

• A process is a running program.
— A program is just a bunch of instructions.

— A process is a program that has state attached to it.

• We usually want to have more processes than we have CPUs.
— How does we get this to work?



Crux of the Problem



Virtualization of the CPU

• The operating system virtualizes the CPU by running one process, 
stopping it and running another, and so forth.
— This basic technique is known as time-sharing.

— We need some mechanisms to enable this.

— We'll learn how to implement a context switch.

• And we need policies that use the mechanisms intelligently.
— We'll look at scheduling policies



Machine State (The Parts of a Process)

• Memory
— Instructions lie in memory
— The data that the process reads/writes is in memory
— The memory that the process can address is its address space

• Registers
— Many instructions read/update registers and are thus important to the machine state
— There are some special registers that are particularly important.

▪ Program Counter / Instruction Pointer (PC/IP)
• Tells us which instruction of the program will execute next

▪ Stack Pointer and Frame Pointer
• Manages the stack for function parameters, local variables, and return addresses

• I/O Information
— Processes interact with persistent storage devices
— Which are open? What is our current offset? Etc.



Process API

• This generic interface is provided in some form on any modern 
operating system.
o Create – Create a new process

o Destroy – Destroy a process forcefully

o Wait – Wait for process to stop running

o Miscellaneous Control – Suspend/Resume, etc.

o Status – Give info about process like running time, state, etc.



Process Creation

• Load code and static data into memory
o Loaded into the processes address space

o The code is on storage (disk/flash/etc) in 
some executable format

o Early OSes loaded entire program into 
memory before executing

o Modern OSes does this lazily
▪ Loading the code/data only as needed

▪ This requires paging/swapping (later topic)



Process Creation

• Allocate memory for the program's 
stack and heap

• Initialize some I/O
o Default file descriptors stdout, stderr, stdin

• Start execution at main() and 
transferring control of the CPU to the 
new process



Process States

• Running – Executing 
instructions

• Ready – Ready to run but is 
currently not running

• Blocked – Waiting for an event 
to happen (commonly I/O 
request)



Process State Examples



Process State Examples



Process State Examples

• Was it a good idea 
to not resume P0 
after its I/O 
completed?

• Was it a good idea 
to run P1 while P0 
waited?

• This is where the 
scheduler comes 
into play.



Process Structure Example


	Cover/Divider
	Slide 1: Chapter 4: Processes

	Content Layouts
	Slide 2: Processes
	Slide 3: Crux of the Problem
	Slide 4: Virtualization of the CPU
	Slide 5: Machine State (The Parts of a Process)
	Slide 6: Process API
	Slide 7: Process Creation
	Slide 8: Process Creation
	Slide 9: Process States
	Slide 10: Process State Examples
	Slide 11: Process State Examples
	Slide 12: Process State Examples
	Slide 13: Process Structure Example


