Chapter 4: Processes
Adam Disney

THE UNIVERSITY OF

TENNESSEE

KNOXVILLE

Processes

* A process is a running program.
— A program is just a bunch of instructions.
— A process is a program that has state attached to it.

* We usually want to have more processes than we have CPUs.
— How does we get this to work?

Crux of the Problem

THE CRUX OF THE PROBLEM:
How To PROVIDE THE ILLUSION OF MANY CPUs?

Although there are only a few physical CPUs available, how can the
OS provide the illusion of a nearly-endless supply of said CPUs?

Virtualization of the CPU

* The operating system virtualizes the CPU by running one process,
stopping it and running another, and so forth.

— This basic technique is known as time-sharing.
— We need some mechanisms to enable this.
— We'll learn how to implement a context switch.

* And we need policies that use the mechanisms intelligently.
— We'll look at scheduling policies

TENNESSEE @ §

KNOXVILLE

Machine State (The Parts of a Process)

* Memory
— Instructions lie in memory
— The data that the process reads/writes is in memory
— The memory that the process can address is its address space

* Registers
— Many instructions read/update registers and are thus important to the machine state

— There are some special registers that are particularly important.
= Program Counter / Instruction Pointer (PC/IP)
 Tells us which instruction of the program will execute next
= Stack Pointer and Frame Pointer
« Manages the stack for function parameters, local variables, and return addresses

* |/O Information
— Processes interact with persistent storage devices
— Which are open? What is our current offset? Etc.

THE UNIVERSITY OF

TENNESSEE @ §

KNOXVILLE

Process API

* This generic interface is provided in some form on any modern
operating system.
o Create — Create a new process
o Destroy — Destroy a process forcefully
o Wait — Wait for process to stop running
o Miscellaneous Control — Suspend/Resume, etc.
o Status — Give info about process like running time, state, etc.

CPU Memory

] | code

Process Creation e

» Load code and static data into memory 'ﬂ““
o Loaded into the processes address space

o The code is on storage (disk/flash/etc) in
some executable format

o Early OSes loaded entire program into
memory before executing

o Modern OSes does this lazily

. | Loading:
= Loading the code/data only as needed Program Takes on-disk program

= This requires paging/swapping (later topic) G sgndreads tinto the

Figure 4.1: Loading: From Program To Process

THE UNIVERSITY OF

TENNESSEE

KNOXVILLE

CPU Memory

aaaaaaaaaaaaaaaa

Process Creation dm

 Allocate memory for the program'’s
stack and heap

* Initialize some |/O
o Default file descriptors stdout, stderr, stdin

- Start execution at main() and
transferring control of the CPU to the I I
new prOCeSS I Program Loading:

Takes on-disk program

r,-f"'-_-_""'-\ and reads it into the
u address space of process

Figure 4.1: Loading: From Program To Process

THE UNIVERSITY OF

TENNESSEE

KNOXVILLE

P St t i Descheduled _
rocess ales . ¥
* Running — Executing

instructions V'O initiate |'C: done

* Ready — Ready to run but is
currently not running Blocked

* Blocked — Waiting for an event
to happen (commonly I/O Figure 4.2: Process: State Transitions
request)

TENNESSEE @ §

KNOXVILLE

Process State Examples

Time Processp Process; Notes

1 Running Ready

2 Running Ready

3 Running Ready

4 Running Ready Processp now done
5 — Running

6 - Running

7 - Running

8 — Running Process; now done

Figure 4.3: Tracing Process State: CPU Only

Process State Examples

Time Processy Process; Notes
1 Running Ready
2 Running Ready
3 Running Ready = Processo initiates I/O
1 Blocked Running Processy is blocked,
5 Blocked Running so Process; runs
6 Blocked Running
7 Ready = Running I/O done
8 Ready Running Process; now done
9 Running —
10 Running — Processg now done

Figure 4.4: Tracing Process State: CPU and I/O

Process State Examples

Time Processy Process; Notes
* Was it a good idea 1 Running Ready
to not resume PO 2 Running Ready
after its I/O 3 Running Ready Processy initiates I/O
completed? 4 Blocked Running Process is blocked,
- Was it a good idea 5 Blocked Running so Process; runs
: 6 Blocked Running
to run P1 while PO .
PSR 7 Ready = Running I/O done
waited” .
o 8 Ready Running Process; now done
* This is where the 9 Running _
scheduler comes 10 Running — Processy now done

into play.

Figure 4.4: Tracing Process State: CPU and I/O

// the registers xv6 will save and restore
// to stop and subsequently restart a process
struct context |

int eip;

int esp;

o Process Structure Example

int edx;

int esi;

int edi;

int ebp;
bi

// the different states a process can be in
enum proc_state { UNUSED, EMBRYO, SLEEPING,
RUNNABLE, RUNNING, ZOMBIE };

// the information xv6 tracks about each process
// including its register context and state
struct proc {

char *mem; // Start of process memory
uint sz; // Size of process memory
char xkstack; // Bottom of kernel stack

// for this process
enum proc_state state; // Process state

int pid; // Process ID

struct proc =*parent; // Parent process

void *chan; // If 'zero, sleeping on chan
int killed; // If 'zero, has been killed
struct file *ofile[NOFILE]; // Open files

struct inode *cwd; // Current directory

struct context context; // Switch here to run process
struct trapframe =tf; // Trap frame for the
// current interrupt

} ’ THE UNIVERSITY OF

TENNESSEE @ §

KNOXVILLE

Figure 4.5: The xv6 Proc Structure

	Cover/Divider
	Slide 1: Chapter 4: Processes

	Content Layouts
	Slide 2: Processes
	Slide 3: Crux of the Problem
	Slide 4: Virtualization of the CPU
	Slide 5: Machine State (The Parts of a Process)
	Slide 6: Process API
	Slide 7: Process Creation
	Slide 8: Process Creation
	Slide 9: Process States
	Slide 10: Process State Examples
	Slide 11: Process State Examples
	Slide 12: Process State Examples
	Slide 13: Process Structure Example

