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Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this

list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,

this list of conditions and the following disclaimer in the documentation

and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its

contributors may be used to endorse or promote products derived from

this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"

AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,

OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
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This is the beginning lecture on computer organization & stack frames.

My goal is to teach you how assembly code is generated by a compiler to work on a standard processor. I don’t
do this in a precise manner, as would be done in a compiler course, but in a manner that is intended to be more
intuitive.

The assembly code is a made-up RISC assembly code that works on a fictitious machine that has 4-byte pointers
and no floating point. I have written a visual assembler for it so that you can see it in action.

Registers

We’re going to assume a general computer architecture, which differs slightly from most machines, but is exemplary
of almost all uniprocessors.

We’ll assume that our machine has 8 general-purpose registers in the CPU. All are 4 bytes and can be read or written
by the user. The first five are named r0, r1, r2, r3, r4. The last three registers are special:

• The sixth is named sp and is called the ”stack pointer.”

• The seventh is named fp and is called the ”frame pointer.”

• The eighth is named pc and is called the ”program counter.”

Additionally, the computer has three read-only registers, which always contain the same values:

• g0, whose value is always zero.

• g1, whose value is always one.

• gm1, whose value is always negative one.

Finally, the computer also has two special registers that the user cannot access directly:

• IR – The instruction register. It holds the instruction currently being executed.

• CSR – The control status register. It contains information pertaining to the execution of the current and
previous instructions.

The instruction cycle

The computer’s operation consists of running instructions repetitively. This is known as the instruction cycle. The
instruction cycle consists of 4 general phases:

1. Decode instruction (in IR)
2. Execute instruction
3. Determine next instruction and update the pc accordingly
4. Load next instruction into the IR
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What is an instruction? Like everything else, it’s a sequence of 0’s and 1’s. We’re going to assume that all of our
instructions are 32 bits (although that’s a naive assumption, it will work for our purposes). Instructions are stored
as part of a program’s memory, and the instruction that is pointed to by the pc register is the one that gets loaded
into the IR for execution.

In other words, if the pc contains the value 0x2040, then the IR is executing the instruction contained in the 4 bytes
starting at memory address 0x2040.

Assembly code is a readable encoding of instructions. A program called an assembler converts assembly code into
the proper 0’s and 1’s that compose the program. If you call gcc with the -S flag, it will produce a .s file containing
the assembler for that C program. Without the -S flag, it produces the instructions directly.

Instructions

1. Memory <-> Register instructions:

ld mem -> %reg Load the value of the register from memory.

st %reg -> mem Store the value of the register into memory.

There are a few ways to address memory:

st %r0 -> i Store the value of register r0 into the memory

location of global variable i.

st %r0 -> [r1] Treat the value of register r1 as a pointer

to a memory location, and store the

value of r0 in that memory location.

st %r0 -> [fp+4] Treat the value of the frame pointer as a

pointer to a memory location, and store

the value of r0 in the memory location 4

bytes after that location. You can use

any value, positive or negative -- the

value must be a multiple of four.

However, you cannot use a register (i.e.

you can’t do st %r0 -> [fp+r2]). This

only works with the frame pointer. It

does not work with any other register.

st %r0 -> [sp]-- Treat the value of register sp as a

pointer to a memory location, store the

value of r0 into that memory location, and then

subtract 4 to the value of sp.

st %r0 -> ++[sp] Treat the value of register sp as a

pointer to a memory location. First, add 4 to

that value, then store the

value of r0 into that memory location.
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2. Register <-> Register instructions:

mov %reg -> %reg Copy a register’s value to another

mov #val -> %reg register, or set its value to a constant.

All arithmetic goes from register to register:

add %reg1, %reg2 -> %reg3 Add reg1 & reg2 and put the sum in reg3.

sub %reg1, %reg2 -> %reg3 Subtract reg2 from reg1.

mul %reg1, %reg2 -> %reg3 Multiply reg1 & reg2.

idiv %reg1, %reg2 -> %reg3 Do integer division of reg2 into reg1.

imod %reg1, %reg2 -> %reg3 Do reg1 mod reg2.

There are two special instructions that let you perform addition and subtraction on the stack pointer:

push %reg This subtracts the value of %reg or #val

push #val from the stack pointer.

pop %reg This adds the value of %reg or #val

pop #val to the stack pointer.

3. Control instructions

jsr a Call the subroutine starting at instruction a.

ret Return from a subroutine.

There are also ”compare” and ”branch” instructions, which is how you implement for and if statements, but I won’t
go over them yet.

Finally, there are also ”directives” which are not really code, but specify that memory must be allocated for variables.
In this assembler, this is just one such directive:

.globl i Allocate 4 bytes in the globals segment

for the variable i.

The program counter points to where the instruction register must go to load its value. On normal instructions, the
pc is incremented by 4 so that the next instruction can be loaded. On control instructions, the pc gets a new value,
allowing the machine to call subroutines, perform ”if-then” statements, etc.

The address space

Each program’s view of its memory is called an ”address space”. Typically, an address space is broken up into 4
parts: The *code*, *globals*, *heap*, and *stack*. The code holds nothing but instructions. The globals is where
global variables are stored, and the heap is where malloc’d storage lives. The stack is for temporary storage, like
local variables and arguments for procedures.

Generally, a process treats memory like a huge array of bytes; however, the bytes are organized logically into units
of 4 bytes each, as that is the size of registers. We assume that this memory is of size 0x80000000. The code starts
at address 0x1000. The globals follow the code, starting in the first address that is a multiple of 4096 (0x1000). On
a real machine, the heap would follow the code, or start at some other address which is a multiple of 4096. With
**jassem**, there is no heap.
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As a program executes, the stack will grow and shrink, but the code and globals stay the same size. The stack grows
from back to front, starting at address 0x80000000 and growing toward lower memory addresses. In between the
globals and stack is unused memory:

The programs’ address space:

|--------------------------|<------- 0x00000000

| No access (Seg faults) |

|--------------------------|<------- 0x00001000

| |

| code |

| |

|--------------------------|

| |

| globals |

| |

|--------------------------|

....

Unused memory

....

| |

| (grows up) |

|^^^^^^^^^^^^^^^^^^^^^^^^^^|

| |

| stack |

| |

|--------------------------|<------- 0x80000000

Simple compiled code.

The C compiler takes C code, and translates it into instructions. What we’re doing in this and the following lectures
is seeing how this translation works. The assembler code produced by the translation consists of machine instructions
and directives. The translation is very logical. For example, the following code:

int i;

int j;

int main()

{

i = 3;

j = 2;

j = i + j;

} /* I am intentionally not returning anything. */

Will compile into the following assembly code:
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.globl i // Allocate i and j as global variables.

.globl j

main:

mov #3 -> %r0 // i = 3

st %r0 -> i

mov #2 -> %r0 // j = 2

st %r0 -> j

ld i -> %r0 // j = i + j

ld j -> %r1

add %r0 ,%r1 -> %r1

st %r1 -> j

ret

This code is pretty straightforward. Each instruction in C has a corresponding set of instructions in assembler.
Unless your compiler is smart, it will produce inefficient code. For example, you can probably see that:

.globl i

.globl j

main:

mov #3 -> %r0

mov #2 -> %r1

add %r0,%r1 -> %r1

st %r1 -> j

st %r0 -> i

ret

This would work just as well and has fewer instructions. If you call gcc with the -O flag, it will attempt to optimize
your code so that it has fewer instructions. However, normally, gcc simply produces straightforward, unoptimized
code. In this class (I’ll repeat this over and over), we are going to produce unoptimized code, which means that
every C statement is translated to assembly code independently. No assumptions are made from one statement to
the next. We leave compiler optimization to another course (like a compiler course).

Now, suppose instead that we have the following code to run:

int main()

{

int i, j;

i = 3;

j = 2;

j = i + j;

}

Since i and j are local variables, they must come from temporary storage: The stack. How does the stack work? It
is governed by the sp and fp registers. The sp and fp designate what is known as a ”frame” on the stack. The fp
points to the bottom of the frame, and the sp points to the top. All memory locations above (less than or equal to)
the stack pointer are considered unused. Thus, we can get new temporary memory by decrementing the sp, thus
putting memory locations into the current stack frame.

For example, when a procedure is first called, these two registers point to the same place in the stack. The frame is
considered empty.
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....

|----------------|

| unused |

|----------------|

| unused | <------------- sp, fp

|----------------|

| used |

|----------------|

| used |

|----------------|

....

|----------------|

| used |

|----------------|

<---------- Location 0x80000000

To allocate room for the two local variables i and j, we decrement the stack pointer by 8. This allocates two 4-byte
quantities in the current stack frame: By convention, we’ll call the lower one j, and the upper one i. This is something
that the compiler defines. We could just as easily have called the lower one i, and the upper one j:

....

|----------------|

| unused | <------------- sp

|----------------|

| i |

|----------------|

| j | <------------- fp

|----------------|

| used |

|----------------|

| used |

|----------------|

....

|----------------|

| used |

|----------------|

<---------- Location 0x80000000

Now, the code for main() is just like before, only instead of accessing i and j as global variables, we access them as
offsets to the frame pointer.

main:

push #8 // This allocates i and j

mov #3 -> %r0

st %r0 -> [fp -4] // Set i to 3

mov #2 -> %r0

st %r0 -> [fp] // Set j to 2

ld [fp -4] -> %r0

ld [fp] -> %r1

add %r0 ,%r1 -> %r1 // Add i and j and put the result

st %r1 -> [fp] // back into j

ret
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Let’s look at what happens when main() is executed:

Stack

|----------------|

| | registers

| | |-----------------|

| | | | r0

| | | | r1

| ..... | | | r2

| unused | | | r3

| unused | | | r4

| unused | /----------- | | sp

| unused | <------------------ | | fp

| used | | main | pc

| .... | |-----------------|

|--------------- |

Note that the fp and sp point to the base of the empty stack frame. The pc points to the beginning of the main
routine. This is the instruction ”push #8”. When this is done executing, we have the following:

Stack registers

|----------------| |-----------------|

| | | | r0

| | | | r1

| ..... | | | r2

| unused | | | r3

| unused | <---------------\ | | r4

| i | \- | | sp

| j | <------------------ | | fp

| used | | main + 4 | pc

| .... | |-----------------|

|--------------- |

Space has been allocated on the current stack frame for i and j, and the pc has been incremented. It now points to
the instruction ”mov #3 -¿ %r0”. This puts the machine into the following state:

Stack registers

|----------------| |-----------------|

| | | 3 | r0

| | | | r1

| ..... | | | r2

| unused | | | r3

| unused | <---------------\ | | r4

| i | \- | | sp

| j | <------------------ | | fp

| used | | main + 8 | pc

| .... | |-----------------|

|--------------- |

Now, the pc points to ”st %r0 -¿ [fp-4]”. When this is done, the location for i is set to the value 1:

8
Copyright © 2023, James S. Plank. All rights reserved.



Stack registers

|----------------| |-----------------|

| | | 3 | r0

| | | | r1

| ..... | | | r2

| unused | | | r3

| unused | <---------------\ | | r4

| i=3 | \- | | sp

| j | <------------------ | | fp

| used | | main + 12 | pc

| .... | |-----------------|

|--------------- |

After the next two instructions, the state of the machine will be:

mov #2 -> %r0

st %r0 -> [fp]

Stack registers

|----------------| |-----------------|

| | | 2 | r0

| | | | r1

| ..... | | | r2

| unused | | | r3

| unused | <---------------\ | | r4

| i=3 | \- | | sp

| j=2 | <------------------ | | fp

| used | | main + 20 | pc

| .... | |-----------------|

|--------------- |

Finally, the last 4 instructions do:

ld [fp-4] -> %r0

ld [fp] -> %r1

add %r0,%r1 -> %r1

st %r1 -> [fp]

Stack registers

|----------------| |-----------------|

| | | 2 | r0

| | | 3 | r1

| ..... | | | r2

| unused | | | r3

| unused | <---------------\ | | r4

| i=3 | \- | | sp

| j=3 | <------------------ | | fp

| used | | main + 36 | pc

| .... | |-----------------|

|--------------- |

Jassem – The Visual Assembler

To help you understand assembler, I have written a simple visual assembler that lets you load assembly code programs
and step through them. It has been written in the graphical scripting language tcl/tk.
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You can get this file from this directory, in jassem.tcl.

The nice thing about tcl/tk is that it works on Unix, Windows, and Macintosh. To use jassem.tcl on our machines,
simply run:

UNIX> wish ~jplank/cs360/bin/jassem.tcl [filename]

Wish should be installed on all of our machines.

To use jassem.tcl on a Windows or Macintosh machine, you will need to install tcl/tk. This is free – get the code
from www.scriptics.com.

In running jassem.tcl, the first thing you do is load a program, such as p1-g.jas (the program above that adds
global variables) or p1.jas (the program above that adds local variables). You should see a picture of the system –
stack, registers, globals and code, as below:

Now you can step through the program, looking at everything as you go. Make sure you understand each step as
you go through it. This is a very helpful tool.

In jassem, the code starts at 0x1000, and global variables, if they exist, start at the next multiple of 0x1000. There
is no heap. The stack ends at 0xfff44c. That’s pretty arbitrary, but such is life.

Addendum

These questions came from a student in cs360 many many years ago – since I imagine many students might share
these questions, I am broadcasting the answers to everyone.

>1. Does the term uniprocessor mean that we have only one CPU, or is there

> something else I should understand?

That is correct – one CPU (as opposed to a parallel processor that has many CPUs)
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>2. In the register <--> memory operation

> st %r0 --> [r1]

> the notes said "... treat the value of register r1 as a pointer to a memory

> location ...". Except for the pc, fp and the sp do we ever know where in

> memory a register is pointing ?

You can assume that the pc points to the code, and the fp/sp both point to memory in the stack. Even these
assumptions can be violated in some systems if you are doing complex stuff (I won’t go into it). Otherwise, you
cannot assume that a register is pointing to a specific memory segment. r1’s pointer can point to the code, globals,
heap or stack.

>3. Does each process assume that the address space is 0x80000000 ? If this is

> the number of bytes it looks huge to me. I got exactly 2048Mb. The hydras,

> for example, have only 96Mb of RAM.

> I got 2048 by doing

> 8*(16^7)/(1024^2).

> Am I making any wrong assumptions ? Things don’t seem right.

Yes, the process assumes that memory is an array of 2 GB. However, it won’t use all 2 GB. In particular, the addresses
between the stack and heap are unused, and they compose the bulk of the address space. Even though a processor
may have much less than 2 GB in RAM, the system is set up to look as though each process can access 2 GB. This
is called ”virtual memory”, and is something that you’ll learn about in CS361. In a few weeks, we’ll see how your
interface to memory is limited. In particular, usually your code and globals segment is smaller than a megabyte. On
my machine, the OS does not allow the stack to grow larger than 8M or so, (type ”limit” and look at ”stacksize”)
and it does not allow the heap to grow too much larger than 96MB. If you don’t believe me – try it:

The program test1.c tests the heap:

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

int main(int argc , char **argv)

{

char *s;

long sz;

if (argc != 2 || sscanf(argv[1], "%ld", &sz) == 0) {

fprintf(stderr , "usage: test1 bytes\n");

exit (1);

}

s = (char *) malloc(sz);

if (s == NULL) { perror("malloc"); exit (1); }

printf("malloc %ld worked\n", sz);

return 0;

}
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In 2018, you had to allocate quite a bit of memory to have the hydra’s fail:

UNIX> gcc test1.c

UNIX> a.out 6000000000

malloc 6000000000 worked

UNIX> a.out 7000000000

malloc: Cannot allocate memory

UNIX>

My Raspberry Pi fails quicker:

pi@raspberrypi:~$ gcc test1.c

pi@raspberrypi:~$ ./a.out 400000000

malloc 400000000 worked

pi@raspberrypi:~$ ./a.out 500000000

malloc: Cannot allocate memory

pi@raspberrypi:~$

This program (test2.c) tests the stack:

#include <stdio.h>

int main()

{

char s[9000000];

printf("s = 0x%x\n", s);

printf("%d\n", *s);

return 0;

}

As you can see below, our stacks are (as of 2018) limited to 8 MB, which seems like plenty of memory to me. So,
when test2.c tries to allocate 9,000,000 bytes on the stack, you get a seg fault:

UNIX> limit | grep stack

stacksize 8192 kbytes

UNIX> gcc test2.c

UNIX> ./a.out

Segmentation fault

UNIX>

If we instead only allocate 8,000,000 bytes, it succeeds:

UNIX> sed ’s/90/80/’ test2.c > test3.c

UNIX> gcc test3.c

UNIX> a.out

s = 0xaf67d5d0

0

UNIX> rm test3.c a.out

UNIX>

Copyright (c) 2023, James S. Plank
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