
CS360 Final Exam
May 4, 2017

James S. Plank
Instructions

There are six questions. You must answer all six questions.
Put your answers on separate sheets of paper. Do not hand in the exam.
Put your name and utk email (xxx@vols.utk.edu) on all of your answer sheets.
I have put my time estimates on how long you should take on each question. Use them to gauge your
timing.

Things to make your life easier
I have all sorts of function prototypes on the last page of this exam.
Do not bother writing down any #include statements.
You do not need to error check any system or library calls with the exception of open(), fopen() and the
exec calls.
You may abbreviate pthread_mutex_t as PMT.
You may abbreviate pthread_cond_t as PCT.
You may assume that the following two procedures exist -- these will save you some time:

PMT *new_mutex()
{
 PMT *m;
 m = (PMT *) malloc(sizeof(PMT));
 pthread_mutex_init(m, NULL);
 return m;
}

PCT *new_cond()
{
 PCT *c;
 c = (PCT *) malloc(sizeof(PCT));
 pthread_cond_init(c, NULL);
 return c;
}

CS360 Final Exam - May 4, 2017 - James S. Plank

Question 1 - 20 points (15 minutes)
Write the jassem assembly code for the C procedure to the
right. As always, don't optimize your code.

int g(int j, int k)
{
 int i;

 for (i = j; i > k; i = g(i, j)) j += 5;
 return j;
}

Question 2 - 20 points (30 minutes)
Let us recall the malloc() lab. In this lab, you wrote
mymalloc.c, which implemented the following five procedures:

void *my_malloc(size_t size): This returns a buffer of at
least size bytes to the user. The number of bytes is a
multiple of 8, and the pointer is aligned on an 8-byte
quantity. 8 bytes of bookkeeping are added to the front of
this buffer. The first four of these contain the size of the
memory block (bookkeeping, padding and all).
my_malloc() maintains a free list of memory blocks, and
if it can satisfy my_malloc() from the free list, it does so.

void my_free(void *p): This assumes that p was
returned to the caller from a previous call to
my_malloc(). It returns the memory block to the free list.

void *free_list_begin(): This returns a pointer to the first
byte of the first free memory block on the free list. If
there are no blocks on the free list, then free_list_begin()
returns NULL.

int main()
{
 unsigned int *x, *fp[20];
 void *z;
 int i;
 /* More variable
 declarations are here */

 x = (unsigned int *) my_malloc(13);
 my_free(my_malloc(73));

 i = 0;
 z = free_list_begin();
 while (z != NULL)
 if (i == 20) {
 fprintf(stderr, "ERROR.\n");
 exit(1); }
 }
 fp[i] = (unsigned int *) z;
 i++;
 z = free_list_next(z);
 }
 /* More code is here */
}

void *free_list_next(void *p): This assumes that p is a pointer to the first byte of a free memory block. It
returns a pointer to the first byte of the next free memory block on the free list. If p points to the last free
memory block, then free_list_next(p) returns NULL.

void coalesce_free_list(): Ignore this.

Now, suppose I am writing one of the gradescript programs for mymalloc. I have the beginnings of such a
program above to the right. It makes two my_malloc() calls, one my_free() call, one free_list_begin() call, and
potentially multiple free_list_end() calls.

Your job is to tell me how you would go about completing this program to check for errors in mymalloc.c. Don't
write code -- tell me in nice, precise English, what errors you are looking for, and how you would check for
them. If you know of numbers to use, then use them -- don't give me, for example, vague things like "check to
see that b is legal" when you know that b should be an exact value, like 40. In that case, you would say "check to
see that b equals 40." (Note that this is just an example -- I know that there is no variable b in the code above).

You are not allowed to make any more calls to the procedures in mymalloc.c.

Don't bother checking to see if x, or any of the z are going to seg fault. Assume that pointers are 4 bytes.

CS360 Final Exam - May 4, 2017 - James S. Plank

Question 3 - 20 points (22 minutes)
Write a program that does what the shell does when it executes the following command:
UNIX> a.out 500 < input.txt | sed -e s/X/Y/ > output.txt

(You should use execlp() rather than execvp(), to make your life easier).

Question 4 - 20 points (28 minutes)
Write a program that takes a number n on the command line, and creates n threads, with ID's 0 through n-1. Each
thread needs to go into an infinite loop, where at each iteration of the loop, it calls:

void perform_calculation(int id). Each thread can perform this at the same time. During this procedure,
each thread communicates with a server to get the information for its calculation, and as a result, updates
some global variables that pertain only to that thread.

void update_state(int id). This is where the thread-specific state is merged with some global state. This
procedure should not be called simultaneously by multiple threads. Moreover, thread 0 should call this
before thread 1, and thread 1 should call it before thread 2, etc. Thread 0 should not call this for the second
time before thread n-1 has called it for the first time, etc.

You need to write the main() that initializes information and creates threads, and the procedure that the threads
run. I make two typedef's below. You should use these in your procedures in such a way that
perform_calculation() and update_state() are synchronized properly among the threads. You are not allowed to
use sleep() calls or busy waiting.

You should assume that perform_calculation() and update_state() have been written by someone else -- you
just call them and assume that they work.

Here are your typedefs (remember, you can abbreviate pthread_mutex_t as PMT and pthread_cond_t as
PCT, and use new_mutex() and new_cond() as specified on the cover page of this exam.).

typedef struct {
 PMT *m;
 PCT **c;
 int n; /* Number of threads */
 int turn; /* Whose turn is next */
} Shared;

typedef struct {
 int id; /* Thread id, from 0 to (n-1) */
 Shared *s;
} Info;

CS360 Final Exam - May 4, 2017 - James S. Plank

Question 5 - 18 points (17 minutes)
You are on a job interview, and the interviewer asks you the following questions. Please answer them in the best
possible way, so that you can get the job!

"Explain to me what SIGPIPE is, and how it gets generated."

"How do you program so that your program recognizes when SIGPIPE gets generated, and then takes the
appropriate actions?"

"Explain how to use the C stdio library to help you with SIGPIPE."

Question 6 - 2 points (1 minute, 13 seconds)
What is the output of the following program?

#include <stdio.h>
#include <stdlib.h>

int main()
{
 unsigned int i, j;

 i = 0x64827c54;
 j = (i << 12);
 printf("0x%08x\n", j);
 exit(0);
}

Prototypes of various useful system and library calls
int fork();
int wait(int *stat_loc);
int dup2(int fildes, int fildes2);
int pipe(int fildes[2]);

int open(const char *path, int oflag, ...);
int close(int fildes);
ssize_t read(int fd, void *buf, size_t count);
ssize_t write(int fd, const void *buf, size_t count);
off_t lseek(int fd, off_t offset, int whence);

char *strcpy(char *destination, char *source);
char *strdup(char *source);
int strcmp(char *s1, char *s2);

typedef void (*sighandler_t)(int);
sighandler_t signal(int signum, sighandler_t handler);

int setjmp(jmp_buf env);
void longjmp(jmp_buf env, int val);
int sigsetjmp(sigjmp_buf env, int savesigs);
void siglongjmp(sigjmp_buf env, int val);

int execl(const char *path, const char *arg, ...); /* End the argument list with NULL */
int execlp(const char *file, const char *arg, ...); /* End the argument list with NULL */
int execv(const char *path, char *const argv[]);
int execvp(const char *file, char *const argv[]);

Prototypes of Standard IO Library Calls
char *fgets(char *s, int size, FILE *stream); /* Returns NULL on EOF */
int fputs(const char *s, FILE *stream); /* Returns EOF when unsuccessful */
int fflush(FILE *stream); /* Returns 0 on success, EOF on failure */
FILE *fdopen(int fd, char *mode); /* Returns NULL on failure */

int fgetc(FILE *stream); /* Returns EOF on EOF */
int fputc(int c, FILE *stream); /* Returns EOF when unsuccessful */

size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream);
size_t fwrite(void *ptr, size_t size, size_t nmemb, FILE *stream);

int atoi(char *s); /* Converts a string to an integer - returns zero if unsuccessful */

Prototypes from Pthreads
typedef void *(*pthread_proc)(void *);
int pthread_create(pthread_t *thread, pthread_attr_t *attr,
 pthread_proc start_routine, void *arg);

int pthread_join(pthread_t thread, void **value_ptr);
void pthread_exit(void *value_ptr);
int pthread_detach(pthread_t thread);
pthread_t pthread_self();

int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);
int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *attr);

int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);
int pthread_cond_init(pthread_cond_t *cond, const pthread_condattr_t *attr);

Prototypes from sockettome.h
extern int serve_socket(int port);
extern int accept_connection(int s);
extern int request_connection(char *hn, int port);

