CS360 Final Exam
May 4, 2017
James S. Plank

Instructions

e There are six questions. You must answer all six questions.

e Put your answers on separate sheets of paper. Do not hand in the exam.

e Put your name and utk email (xxx@vols.utk.edu) on all of your answer sheets.

e [have put my time estimates on how long you should take on each question. Use them to gauge your
timing.

Things to make your life easier

e [have all sorts of function prototypes on the last page of this exam.

¢ Do not bother writing down any #include statements.

¢ You do not need to error check any system or library calls with the exception of open(), fopen() and the
exec calls.

¢ You may abbreviate pthread_mutex_t as PMT.

¢ You may abbreviate pthread_cond_t as PCT.

¢ You may assume that the following two procedures exist -- these will save you some time:

PMT *new_mutex()
{
PMT *m;
m = (PMT *) malloc(sizeof(PMT));
pthread mutex init(m, NULL);
return m;

PCT *new_cond()
{
PCT *c;
c = (PCT *) malloc(sizeof(PCT));
pthread cond init(c, NULL);
return c;

CS360 Final Exam - May 4, 2017 - James S. Plank

Question 1 - 20 points (15 minutes) int g(int 3, int k)
{
Write the jassem assembly code for the C procedure to the int i;
right. As always, don't optimize your code. _ L . . :

for (i = 3; 1> k; 1 =g9(i, J)) J += 5;
return j;

}
Question 2 - 20 points (30 minutes) int main()
{
Let us recall the malloc() lab. In this lab, you wrote unsigned int *x, *fp[20];
mymalloc.c, which implemented the following five procedures: Zitdifz;
. . . . * M iabl
e void *'my_malloc(sue_t size): This returns a buffer of at / dez;eriiis ire here */
least size bytes to the user. The number of bytes is a
multiple of 8, and the pointer is aligned on an 8-byte X = (unsigned int *) my malloc(13);

quantity. 8 bytes of bookkeeping are added to the front of || my_free(my_malloc(73));
this buffer. The first four of these contain the size of the
memory block (bookkeeping, padding and all).

i
z

0;
free list begin();

my_malloc() maintains a free list of memory blocks, and while (z != NULL)

if it can satisfy my_malloc() from the free list, it does so. if (i == 20) {
fprintf(stderr, "ERROR.\n");
exit(1l); }

¢ void my_free(void *p): This assumes that p was

returned to the caller from a previous call to ; I . .
. pl[i] = (unsigned int *) z;
my_malloc(). It returns the memory block to the free list. i4+;
z = free_list next(z);
o void *free_list_begin(): This returns a pointer to the first }
byte of the first free memory block on the free list. If /* More code is here */
there are no blocks on the free list, then free_list_begin() }
returns NULL.

¢ void *free_list_next(void *p): This assumes that p is a pointer to the first byte of a free memory block. It
returns a pointer to the first byte of the next free memory block on the free list. If p points to the last free
memory block, then free_list_next(p) returns NULL.

¢ void coalesce_free_list(): Ignore this.

Now, suppose I am writing one of the gradescript programs for mymalloc. I have the beginnings of such a
program above to the right. It makes two my_malloc() calls, one my_free() call, one free_list_begin() call, and
potentially multiple free_list_end() calls.

Your job is to tell me how you would go about completing this program to check for errors in mymalloc.c. Don't
write code -- tell me in nice, precise English, what errors you are looking for, and how you would check for
them. If you know of numbers to use, then use them -- don't give me, for example, vague things like "check to
see that b is legal" when you know that b should be an exact value, like 40. In that case, you would say "check to
see that b equals 40." (Note that this is just an example -- [know that there is no variable b in the code above).

You are not allowed to make any more calls to the procedures in mymalloc.c.

Don't bother checking to see if x, or any of the z are going to seg fault. Assume that pointers are 4 bytes.

CS360 Final Exam - May 4, 2017 - James S. Plank

Question 3 - 20 points (22 minutes)

Write a program that does what the shell does when it executes the following command:
UNIX> a.out 500 < input.txt | sed -e s/X/Y/ > output.txt

(You should use execlp() rather than execvp(), to make your life easier).

Question 4 - 20 points (28 minutes)

Write a program that takes a number n on the command line, and creates n threads, with ID's O through n-1/. Each
thread needs to go into an infinite loop, where at each iteration of the loop, it calls:

¢ void perform_calculation(int id). Each thread can perform this at the same time. During this procedure,
each thread communicates with a server to get the information for its calculation, and as a result, updates
some global variables that pertain only to that thread.

o void update_state(int id). This is where the thread-specific state is merged with some global state. This
procedure should not be called simultaneously by multiple threads. Moreover, thread O should call this
before thread 1, and thread 1 should call it before thread 2, etc. Thread 0 should not call this for the second
time before thread n-1 has called it for the first time, etc.

You need to write the main() that initializes information and creates threads, and the procedure that the threads
run. I make two typedef's below. You should use these in your procedures in such a way that
perform_calculation() and update_state() are synchronized properly among the threads. You are not allowed to
use sleep() calls or busy waiting.

You should assume that perform_calculation() and update_state() have been written by someone else -- you
just call them and assume that they work.

Here are your typedefs (remember, you can abbreviate pthread_mutex_t as PMT and pthread_cond_t as
PCT, and use new_mutex() and new_cond() as specified on the cover page of this exam.).

typedef struct {

PMT *m;
PCT **c;
int n; /* Number of threads */
int turn; /* Whose turn is next */
} Shared;

typedef struct {
int id; /* Thread id, from 0 to (n-1) */
Shared *s;

} Info;

CS360 Final Exam - May 4, 2017 - James S. Plank

Question S - 18 points (17 minutes)

You are on a job interview, and the interviewer asks you the following questions. Please answer them in the best
possible way, so that you can get the job!

e "Explain to me what SIGPIPE is, and how it gets generated."

e "How do you program so that your program recognizes when SIGPIPE gets generated, and then takes the
appropriate actions?"

e "Explain how to use the C stdio library to help you with SIGPIPE."

Question 6 - 2 points (1 minute, 13 seconds)

What is the output of the following program?

#include <stdio.h>
#include <stdlib.h>

int main()

{

unsigned int i, 3Jj;

i = 0x64827c54;

3 (i << 12);
printf("0x%08x\n", j);
exit(0);

}

Prototypes of various useful system and library calls

int fork();

int wait(int *stat_loc);

int dup2(int fildes, int fildes2);
int pipe(int fildes[2]); int setjmp(jmp buf env);
int open(const char *path, int oflag, ...);
int close(int fildes);

typedef void (*sighandler_t) (int);
sighandler_t signal(int signum, sighandler_t handler);

void longjmp(jmp_buf env, int val);
int sigsetjmp(sigjmp_buf env, int savesigs);
void siglongjmp(sigjmp_buf env, int val);

ssize_t read(int fd, void *buf, size t count);
ssize t write(int fd, const void *buf, size t count);
off t lseek(int fd, off_t offset, int whence);

char *strcpy(char *destination, char *source);
char *strdup(char *source);

int stremp (char *sl, char *s2);

int execl(const char *path, const char *arg, ...)

/* End the argument list with NULL */

7
int execlp(const char *file, const char *arg, ...); /* End the argument list with NULL */

int execv(const char *path, char *const argv[]);
int execvp(const char *file, char *const argv[]);

Prototypes of Standard IO Library Calls

char *fgets(char *s, int size, FILE *stream); /* Returns NULL on EOF */

int fputs(const char *s, FILE *stream); /* Returns EOF when unsuccessful */

int fflush(FILE *stream); /* Returns 0 on success, EOF on failure */
FILE *fdopen(int fd, char *mode); /* Returns NULL on failure */

int fgetc(FILE *stream); /* Returns EOF on EOF */

int fputc(int c, FILE *stream); /* Returns EOF when unsuccessful */

size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream);
size t fwrite(void *ptr, size_t size, size_t nmemb, FILE *stream);

int atoi(char *s); /* Converts a string to an integer - returns zero if unsuccessful */

Prototypes from Pthreads

typedef void *(*pthread_proc) (void *);
int pthread_create(pthread_t *thread, pthread_attr_t *attr,
pthread_proc start routine, void *arg);

int pthread_join(pthread_t thread, void **value_ptr);
void pthread_exit(void *value_ptr);
int pthread_detach(pthread t thread);

pthread t pthread_self();

int pthread mutex_lock(pthread mutex t *mutex);
int pthread mutex unlock(pthread mutex t *mutex);
int pthread mutex_init(pthread_mutex t *mutex, const pthread mutexattr t *attr);

int pthread cond_signal(pthread_cond t *cond);
int pthread cond_wait(pthread_cond_t *cond, pthread mutex t *mutex);
int pthread cond_init(pthread_cond_t *cond, const pthread condattr_t *attr);

Prototypes from sockettome.h

extern int serve_socket(int port);
extern int accept_connection(int s);
extern int request_connection(char *hn, int port);

