You are taking CS402, and your design team consists of you, Larry, Moe and Curly. The professor has made you all sign non-disclosure agreements, but for the life of you, you don't know why
Larry, Moe or Curly would want to disclose their disastrous programming skills to anyone! Whatever, you have taken the design lead, and you have decided that the four of you will each write
your own C programs:

* Moe's will be compiled into the executable moe;

» Larry's will be compiled into the executable larry, and

* Curly's will be compiled into the executable curly.

* None of the executables (not even yours) will have command line arguments, and none of them will be multi-threaded.

Your program (named shemp.c, of course), is going to be the master program. It is going to create processes so that when the system runs, it is going to look as drawin in the picture above. As
you can see:

* The shemp program will fork a child. We'll call the two processes, "shemp parent" and "shemp child." They are going to share code.

+ Moe's standard output goes to Larry's standard input.

« Larry's standard output goes to Curly's standard input.

+ Curly's standard output goes to Moe's standard input.

* Moe, Larry and Curly’s standard error will all go to the standard input of "shemp parent.” Shemp parent is going to repeatedly read its standard input, process it a bit and write to standard
output.

* Moe, Larry and Curly will all be children of "shemp child."

You may wonder why we're splitting shemp into a parent and a child? The reason is as follows. Larry, Moe and Curly can't be trusted. Their processes are supposed to talk to each other forever,
but in reality, they may seg fault or go into infinite loops. The child is there to detect when any of them die. When that happens, it is going to kill the others and then exit. When the others are
dead, the parent will be able to detect it. It will then print "NFS not responding, still trying" and go into an infinite loop. That way, when you demo your project, professor Birdwell will hopefully
be suckered into thinking that we have network problems, and he won't realize that disaster has occurred.

Fun as it would be, I'm not making you write shemp.c. However, I'm sure you would write it flawlessly, using only the system calls fork(), execlp(), close(), wait(), pipe(), dup2() and kill().
Now, answer the following questions:

* Question 1: How many times is "shemp-parent" going to call fork()?

* Question 2: How many times is "shemp-child" going to call fork()?

* Question 3: How many times is "shemp-parent” going to call execlp()?

+ Question 4: How many times in total is execlp() called by any of the processes?

* Question 5: "Shemp-Child" is going to call pipe() three times. How many times is "shemp-parent” going to call pipe()?

* Question 6: How many times is the larry process going to call dup2()?

+ Question 7: During the demo, disaster indeed occurs. Larry goes into an infinite loop and stops reading and writing. Curly doesn't bother reading from standard input, and instead goes
into an infinite loop writing to standard output. And moe seg faults. How does "shemp child" detect that moe has died on a seg fault?

* Question 8: After detecting that moe has died, "shemp child" kills larry and tries to kill curly, but curly is already dead. Why?

* Question 9: How does "shemp-parent” detect that larry, moe and curly are dead?

* Question 10: When "shemp-parent" goes into its infinite loop, you want to make sure that there are no zombie processes. How many times must it call wait() to do that?

Clicker Questisns for today

Lt WAt goiRg 11 Bpgen with e varis pressees

L
T

il vl ki) oo shern chibl.

« BTl chos Dotk ot of e gige:
.lummhmwwmlmlmlmﬂhm

Chrker Questivns for tuday
Le's ool whi's pelog 10 biprpen it 1 vaciies provessec:
Shwp Parest
Tl Arstcull pip s Iy ok s,

|....||.»u=.||muhau=d_luuu
tersbard apui

0wl v e s o e ppe.

» gy

W 0 s e
Shemp Child

.lnl"ﬂm:a‘ o7 The pife D dessi pu\-f('\ﬂcm!u’l\m i)
il o e L3t

Gt e 1 o £l K] e s i

- il i),

sy euely

« Tiwill rexd froem standard irgrt and prcens the ing
« Corunuly,

gt inm I It .

Blseasy Chidl

« Il ol all ofthe i Hka descrdpaes thore s & o these — 3 pipes).

T el ol e e ke ey
= o Lt bappera, it will ol M) b il e et s pscesmes.
. |m|||eum-
mswlarryiarty
B e oy »

Clicker Quaectlons i tady
Nt meview whts pring s hagpen with the variom prcmer:

Shemp Prenl

= I il sl [l
= It will e call forkr) tn s shemp chid

= T TH a2 he e o o e i e s vl g,

= In il s b s ul e i

o It wil rmad fromn

mmmm

i mlin,

= Founmaally, nper.
“h -,lr.uunllllwwllhluﬂ.llhmlmm-mnm
o It e s vk

vt K 0 Crcate b MeBVREIFF risisics.
I wil chiss all ul the pipe Sl wum«swm pipest
2t

- Time i ey e wllinng wal eack

e yare's pige. Lt

- dlr et o i
sy w2kl i s s .

a8 otser
e 241 o [. e £ i, o
Ty illchosesl o o pie s enpen:

Tt il) 1 185 et = Tty ik cll ooy 1 2scus: oy easly.
ey e wres s o, - s e hs feeses
Ut the quesiaes Outes the spstins
[P — Ui et ez Gien st o
« Qustisn £: O « Qresties 1 O
* Question 3. Thce. * Duestio 2 Three.
+ G 37, + Questnia 3 =
: Thonas. + Qoistion & Twce.
© ias o + Questie 5. .
- Eamartion & Thi + Questus & Taee.
< Qutina :) s i Mot pil « Qs 7.] st i Wos's il
. Cwly's sasu, Thenefare, s + Questiug B; Sice moe disd, e s 0o ool s, T, Cucle UGELPL s
« (amatian 9 1 rease FIIF e st + Quostes ¥ 1 mads LEW.Fror i,
+ Qwmlivn 1 O, + s 10

o Thes il e o ihe e e s csipees
* ey il ell eseclp) L o meelacTuy.

Ui the qesticns

Gitven st

urstian 6: Thows

Juestian 7 waiti) recums wiih Mae's pid
wen, twr: oty e, Therstons,

Questlan 8- [s EOF Frum shlie.
pucszing 19; G

