
You are taking CS402, and your design team consists of you, Larry, Moe and Curly. The professor has made you all sign non-disclosure agreements, but for the life of you, you don't know why 
Larry, Moe or Curly would want to disclose their disastrous programming skills to anyone! Whatever, you have taken the design lead, and you have decided that the four of you will each write 
your own C programs: 

« Moe's will be compiled into the executable moe; 
« Larry's will be compiled into the executable larry, and 
« Curly's will be compiled into the executable curly. 
« None of the executables (not even yours) will have command line arguments, and none of them will be multi-threaded. 

Your program (named shemp.c, of course), is going to be the master program. It is going to create processes so that when the system runs, it is going to look as drawin in the picture above. As 
you can see: 

 The shemp program will fork a child. We'll call the two processes, "shemp parent” and "shemp child." They are going to share code. 
* Moe's standard output goes to Larry's standard input. 
« Larry's standard output goes to Curly's standard input. 
« Curly's standard output goes to Moe's standard input. 
« Moe, Larry and Curly's standard error will all go to the standard input of "shemp parent.” Shemp parent is going to repeatedly read its standard input, process it a bit and write to standard 

output. 
* Moe, Larry and Curly will all be children of "shemp child." 

You may wonder why we're splitting shemp into a parent and a child? The reason is as follows. Larry, Moe and Curly can't be trusted. Their processes are supposed to talk to each other forever, 
but in reality, they may seg fault o go into infinite loops. The child is there to detect when any of them die. When that happens, it is going to kill the others and then exit. When the others are 
dead, the parent will be able to detect it. It will then print "NFES not responding, still trying" and go into an infinite loop. That way, when you demo your project, professor Birdwell will hopefully 
be suckered into thinking that we have network problems, and he won't realize that disaster has occurred. 

Fun as it would be, I'm not making you write shemp.c. However, I'm sure you would write it flawlessly, using only the system calls fork(), execlp(), close(), wait(), pipe0, dup2() and kill(). 

Now, answer the following questions: 

« Question 1: How many times is "shemp-parent" going to call fork()? 
« Question 2: How many times is "shemp-child" going to call fork()? 
= Question 3: How many times is "shemp-parent” going to call execlp()? 
« Question d: How many times in total is execlp() called by any of the processes? 
« Question 5: "Shemp-Child" is going to call pipe() three times. How many times s "shemp-parcnt” going to call pipe()? 
« Question 6: How many times is the larry process going to call dup2(? 
* Question 7: During the demo, disaster indeed occurs. Larry goes into an infinite loop and stops reading and writing. Curly doesn't bother reading from standard input, and instead goes 

into an infinite loop writing to standard output. And moe seg faults. How does "shemp child" detect that moe has died on a seg fault? 
» Question 8: After detecting that moe has died, "shemp child" kills larry and tries to kill curly, but curly is already dead. Why? 
« Question 9: How does "shemp-parent" detect that larry, moe and curly are dead? 
* Question 10: When "shemp-parent" goes into its infinite loop, you want to make sure that there are no zombie processes. How many times must it call wait() to do that?



T S——— 
[RrET—— 

S e i e e - 

s o 1y e e 1 


