
Question 1: Behold the following

program:

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>

int main()
{

FILE xf;
int i, i;

f = fopen("f4.txt", "r");
fscanf(f, "%d", &i);

if (fork() !'= @) sleep(1);
fscanf(f, "%d", &j);
printf("%d %d\n", i, j);
return 0;

Suppose f4.txt has one line, which is
"12 3 4". What four numbers are

printed when we run the program?

Enter them as four numbers separated
by spaces.

Question 2: Behold the following program:

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>

int main()

int i;

int fd, fd2;
int status;

fd = open ("f1l.txt", O_WRONLY | O_CREAT | O_TRUNC, 0666);

for (i =0; i <5; i++) {

if (fork() ==0) {
fd2 = open ("f2.txt", O_WRONLY | O_CREAT | O_TRUNC, 0666);
write(fd2, "Binky\n", 6);
i=10;

}
}

write(fd, "Fred\n", 5);

close(fd);
close(fd2);
return 0;

After I run this program, how many lines are in f1.txt and f2.txt combined?

Answers to today's clicker questions

Question 1

The stdio library does buffering on input and output. With input, that means that when you call fscanf(f..., and f is a file, then the stdio library will do
a big read() and store the results into a buffer. That way, the second fscanf() doesn't have to do a system call.

In the case of this program, the first fscanf() will read the entire file into a buffer and return 1. The fork() call then duplicates the buffer into the

address space of the child. Because of that, both processes will read 2 in the second fscanf() statement. The answer is "1 2 12".

Question 2

In this program the parent calls fork() five times. The children all open f2.txt and write "Binky". Each child will overwrite the file, so at the end of

the program, f2.txt contains a single line: "Binky."

The children all set i to 10, so they leave the for loop at that time.

All six processes (the parent and the five children) write "Fred" to fd, which, because of the fork() call, is shared. In particular, they all share the

same seek pointer for the file, so each process appends "Fred" to the file.

At the end, there are six "Fred" lines in f1.txt and one "Binky" line in f2.txt. The answer is 7.

UNIX> gcc src/click3.c
UNIX> ./a.out
UNIX> cat -n fl.txt f2.txt

Fred
Fred
Fred
Fred
Fred
Fred
Binky R

P
O
U
R
W
N
E

UNIX>

