
Question 1: Behold the following #include <stdio.h> close(pi[e]); 
program: #include <stdlib.h> close(pll[1]); 

#include <unistd.h> close(p2[0]); 

#include <stdio.h> close(p2[1]); 
#include <stdlib.h> %nt main() 
#include <unistd.h> fin = fdopen(in, "r"); 

int pil2], p2[2]; fout = fdopen(out, "w"); 
i i int in, out; 
pt: nain() FILE xfin, xfout; | for (i =0; i < 10; irt) { 

int i3 int i, j; fprintf(fout, "%d\n", i); 
! ) fflush(fout); 

;i< 10; i++) fork(); s;z:{g;;f 
?;:Ex(a-l\n k1 ! for (i =0; i <10; i++) { 

} g if (fork() == 0) { if (fscanf(fin, "%d", &) == EOF) return 0; 
in = dup(p1lel); printf("j: %d\n", j); 
out = dup(p2[1]1); fflush(stdout); 

How many lines will this program print? } else { } 
in = dup(p2[0]); 
out = dup(p1l1]l); return 0; 

Question 2: How many lines does this program print? If you think the program never exits, enter -1. 

Question 3: In the program above, how many write() system calls does the parent process make? If you 
think that the answer is "it depends", enter -1. 

Question 4: In the program above, How many read() system calls does the parent process make? If you 

think that the answer is "it depends", enter -1. 

Question 5: Ts it possible that you'll see the 'UNIX>' prompt before all of the output of this program is 
printed? 



Answers to today's clicker questions 

Question 1 

210=1024. 

Question 2 

Let's describe what's going on: 

« The parent sefs up two pipes. 
The parent creates a child. 
In the parent, in comes from one pipe and our goes to the other. 
Same with the child, so that the child writes to the pipe that the parent is reading, and vice versa. 
Each of them writes 10 integers to the pipe. The fflush() call makes sure that the write() calls are made. Since the OS's pipe buffers are on the order of 4K or 8K, the write() 
calls put the bytes into those buffers, and the flush() calls all return. 

 Each of them reads an integer from the pipe and writes it to standard output. 

So, at the end of this program, each process will have written 10 lines to standard output. The answer is 20. 

Question 3 

When we call fitush(), we're forcing a write() call. So there are 20 write() calls. 

Question 4 

Reading is different -- the stdio library will try to read whatever's in the pipe buffer on its first read call. So, suppose that when the parent calls fscanf(), the child has written 
everything to the pipe. Then there will only be one read() call. Suppose instead that when the parent calls fscanf(), the child is only through half of the first for() loop. Then there 
will be at least two read() calls. So the answer is -1 — we don't know. 

Question 5 

Since the parent doesn't call wait(), the parent can easily exit before the child is done with its second loop. In that case, you'll get the prompt and then get some output: True.


