
Each of these program prints a statement.

Answer whether or not the statement is true.

Question 1:

int main()

if (fork() == 0) {
sleep(1
printf("I am an orphan process.\n")

¥ else {
sleep(2);

exit(0);

Question 2:

int main()
{

int i=5;

if (fork() !=0) {

sleep(1);
printf("In my process, i

Question 3:

int main()
{

int fd;

fd = open("fl.txt", O_WRONLY | O_CREAT, 0666);
dup2(fd, 1);
close(fd);

if (fork() !=0) {

printf("This line will print on the screen\n."

}

Question 4:

int main()
{

int pl[2];

pipe(p);
if (fork() == @) {

dup2(ple], 0);
printf("This process will never terminate.\n")
execlp(“cat”, "cat", NULL)
exit(@);
else {
dup2(pl1], 1);
close(0!
sleep(1!
exit(0);

-

Question 5:

int main()

if (fork()
sleep(
printf(*I am a zombie process.\n");

} else {
sleep(1);

¥
exit(0);

Question 6:

int main()

char *s = "ABCDEFGHIJKLMNOPQRSTUWXYZ\n";
int i;
int pl2];

pipe(p);
close(p[o]
if (fork() e) {

for (i=2; i< 20; i++) dup2(pll], i);
printf("I am about to generate SIGPIPE.\n");
while (1) write(10, s, strlen(s));

Answer to Clicker Questions

Question 1

False - the process would be an orphan if its parent exited before it exited. This is the other way around. The process is a zombie.

Question 2

True -- The child's address space is copied from the parent, so when the parent changes i, the child is unaffected.

Question 3

False -- in the child, stdout is going to f1.txt. The dup2(2,1) call in the parent does not affect the child.

Question 4

True -- the write end of the pipe is not closed in the child, so the cat process will never read EOF. Although the parent doesn't close the write end either, it exits, so it is
irrelevant.

Question 5

False -- see question 1.

Question 6

True -- the write(10) calls will write to the write end of the pipe, and there is no read end. Tt may not happen on the first write() call, but it will happen on one of them.

