Behold the following program:

Behold the following program:

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main()
{
int 1i;

for (i = @; i < 5; i++) fork();
printf("Hi\n");
return 0;

3

Question 1: How many lines does this program
print?

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main()

int i, ¢;
int status;

c = fork();
if (c '=0) {
sleep(15);
return 0;

sleep(1);

for (1 =0; i < 5; i++) {
c = fork();
if (c == @) sleep(1l);

Y

return @;

Question 2: Including the initial process, how many processes will be created by this
program?

Question 3: How many processes, at some point in this program, will be zombies?

Question 4: How many processes, at some point in this program, will be orphans?

Answers to today's clicker questions
Question 1

25 =132,

Question 2

To start, the initial parent creates a child, and then sleeps for 15 seconds. We'll come back to this process.

The child process now goes into that familiar for() loop. By the end of that loop, there will be 32 processes. The only quirky
thing is that the children call sleep(1) when they are created.

However, we have the answer to the first question: 33 processes (I'd accept the answer of 32, not accounting for the initial
parent process.)

Question 3

A zombie occurs when a child exits, and its parent still exists but hasn't called wait(). That is most definitely the case with the
first child process, as the initial parent sleeps for 15 seconds. When it wakes up, the child will be a zombie.

That's the only zombie, so the answer is 1. Let's answer the next question to see what happens with the other processes.

Question 4

Inside that for() loop, when a process calls fork() and that returns non-zero, then that process will not call sleep. It will exit,
and because its children all call sleep(1) right after they are created, when it exits, all of its children are alive and sleeping.
That means those children are now orphans.

So every process except for the initial child process becomes an orphan. The answer is 31.

To hammer this home, I've annotated the program in src/click2-debug.c:

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main()

{
int i, c;
int status;
char 1line[100];

c = fork();
if (¢ !'=0) {

/* The original parent prints out the process id of its child. */

printf("The first child process is %d\n", c);
fflush(stdout);

/* Now it sleeps. When it wakes up, it calls "ps x" to print out its child's status.
The child should be a zombie process. */

sleep(15);

printf("Original parent process is exiting. Child is a zombie:\n");
sprintf(line, "ps x | grep %d | sed /grep/d", c);

system(line);

/* The original process exits */

return 0;

}
sleep(l);
/* This loop creates 31 more processes. */

for (i = 0; i < 5; i++) {
c = fork();
if (¢ == 0) {
sleep(l);
} else {

/* Have the parent print the process id of its child. */

printf("Process %d just created child %d\n", getpid(), c);
fflush(stdout);
}
}

/* When each process exits, have it print out its process id and its parent's.
For all processes but one, the parent will be 1, as the process is an orphan. */

printf("Process %d exiting -- parent is %d\n", getpid(), getppid());
fflush(stdout);

return 0;

When we run it, we can confirm that one process becomes a zombie. 31 become orphans:

UNIX> gcc src/click2-debug.c
UNIX> a.out
The first child process is 8353

Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process

8353 just created child 8354

8353 just created child 8355

8353 just created child 8356

8353 just created child 8357

8353 just created child 8358

8353 exiting -- parent is 8352 # The first child exits. It will become a zombie
8355 just created child 8360

8356 just created child 8361

8354 just created child 8359

8358 exiting -- parent is 1 # All of the other children will be orphans
8355 just created child 8362

8356 just created child 8363

8356 exiting -- parent is 1

8354 just created child 8364

8357 just created child 8365

8355 just created child 8366

8357 exiting -- parent is 1

8355 exiting -- parent is 1

8354 just created child 8367

8354 just created child 8368
8354 exiting -- parent is 1
8366 exiting -- parent is 1
8363 exiting -- parent is 1
8365 exiting -- parent is 1
8361 just created child 8371

8364 just created child 8373
8367 just created child 8374
8360 just created child 8369

8362 just created child 8372
8361 exiting -- parent is 1
8367 exiting -- parent is 1
8362 exiting -- parent is 1
8359 just created child 8370
8368 exiting -- parent is 1
8360 just created child 8376

8364 just created child 8375
8359 just created child 8377

Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process
Process

8360
8364
8359
8359
8374
8371
8378
8376
8375
8372
8377
8369
8373
8377
8373
8369
8370
8370
8370
8380
8382
8381
8379
8379
8383
8385

exiting -- parent is 1
exiting -- parent is 1
just created child 8378
exiting -- parent is 1
exiting -- parent is 1
exiting -- parent is 1
exiting -- parent is 1
exiting -- parent is 1
exiting -- parent is 1
exiting -- parent is 1

just created child 8382
just created child 8381
just created child 8380

exiting -- parent is 1
exiting -- parent is 1
exiting -- parent is 1
just created child 8379

just created child 8383
exiting -- parent is 1
exiting -- parent is 1
exiting -- parent is 1
exiting -- parent is 1
just created child 8385
exiting -- parent is 1
exiting -- parent is 1
exiting -- parent is 1

Original parent process is exiting.
8353 s000

UNIX>

7+ 0:00.00 (a.out)

Child is a zombie:

We confirm that the first child is a zombie.

