
(For questions 1 and 2): Behold the following 

program, which is compiled to bin/click1: 

#include <stdio.h> 
#include <stdlib.h> 
#include <unistd.h> 
#include <fentl.h> 

int main() 
3§ 

int fd; 
int child, parent, status; 

char c; 

fd = open("fl.txt", O_RDONLY); 

child = (fork() 
parent = !child; 

0); 

if (child) sleep(1); 
read(fd, &c, 1); 
if (parent) wait(&status); 
printf("sc\n", c); 

return 0; 

Here's f1.txt: 

UNIX> cat fl.txt 
Christian Dogleg Jr 
Tyler Sims 
UNIX> 

Question 1: What is the first line of 

bin/click1? 
Question 2: What is the second line of 

bin/click1? 

Question 3: After running the following 
program, how many lines are there in 

£2.4xt? 

#include <stdio.h> 
#include <stdlib.h> 
#include <unistd.h> 
#include <fcntl.h> 

int main() 
{ 

FILE *f; 

f = fopen("f2.txt", "w"); 
fprintf(f, "Fred\n"); 
fork(); 
fork(); 
fprintf(f, "Binky\n"); 
fclose(f); 
return 0; 

Question 4: If you call alarm() and then fork(), the 

operating system will only generate SIGALRM for 

the parent process. 

The default signal handler for SIGLARM has the 

process die instantly, without calling exit(), and 

without flushing any stdio buffers. 

If you wait a few seconds after the following 

program exits, how many lines are there in f3.txt? 

#include <stdio.h> 
#include <stdlib.h> 
#include <unistd.h> 
#include <fcntl.h> 

int main() 

FILE *f; 

f = fopen("f3.txt", "w"); 
fprintf(f, "Fred\n"); 
alarm(1); 
fork(); 
sleep(2); 
fprintf(f, "Binky\n"); 
fclose(f); 
return 0; 



Questions 1 and 2: Here's what happens: 

1. The process opens "f1.txt". It uses open for this, so 

there is no buffering -- it's just a file descriptor in the 

operating system. 
2. Tt calls fork(). There are two boolean variables -- child 

is true in the child and parent is true in the parent. 

3. The child sleeps for a second. 

4. The parent doesn't sleep, so it reads a byte from f1.txt. 
That byte is the character 'C' -- the first byte in the file. 

5. The parent then calls wait(). That will block until the 

child is done. 
6. The child eventually wakes up from its sleep() call, and 

it calls read(). When you call fork() file descriptors are 

duplicated between the parent and child, as if dup() 
were called, so they share a seek pointer. Therefore, the 

child reads the second byte from the file, which is the 

character 'h'. 

. The child now prints the 'h' and exits. 
8. The parent wakes up from the wait() call, prints the 'C' 

and exits. 

= 

So, the answer to Question 1 is 'h', and the answer to Question 

2is 'C': 

UNIX> gcc src/clickl.c 
UNIX> ./a.out 
h 
C 
UNIX> 

Question 3: Here's what happens: 

1. The file "f2.txt" is opened for writing via a stdio buffer. 

Since the output is going to a file, fprintf() calls will go 
into a buffer, which isn't flushed until the buffer is full 

or explicitly flushed. 
2. For that reason, "Fred" goes into the buffer, and not yet 

to "f2.txt". 

3. After the first fork() call, there are two processes. 

4. After the second fork() call, there are four processes. 

5. All four processes write "Binky" into the buffer. 

6. Then all four processes close f, which flushes the 

buffer. For that reason, each process will write both 

"Fred" and "Binky". 
7. Therefore, there are 8 lines of output. 

UNIX> gcc src/click2.c 
UNIX> ./a.out 
UNIX> cat -n f2.txt 

Fred 
Binky 
Fred 
Binky 
Fred 
Binky 

Fred 
Binky O

N
O
U
 

A 
W
N
 

R
 

UNIX> 



Question 4: Here's what happens: 

1. The file "f3.xt" is opened for writing via a stdio buffer. Since the output is going to a file, fprintf() calls will go into a buffer, which isn't flushed until the buffer is full or explicitly flushed. 
2. As before, "Fred" is written o the buffer, but not yet to the file. 
3. We call alarm(1), which will send SIGALRM to the process in a second. 
4. We call fork(), and both processes sleep for two seconds. 
5. After a second, SIGALRM is sent to the parent. Since it did not set up a signal handler, the process will exit withtout flushing its buffers. That means the parent never writes "Fred” to the file. 
6. After another second, the child wakes up, wirte "Binky" to the buffer and then closes the file. This flushes the buffer, so only two lines are written to the file. 
7. Therefore, the answer is two. 

UNIX> gee src/clickd.c 
WNIX> ./a.out 
Alarm clock: 14 #0n my mac, this is what happens when you don't catch SIGALRM 
UNIX> cat -n f3.txt 

1 Fred 

2 Binky 
UNIX>


