
Question 1: How many lines will the following program print when
standard output goes to the screen?

int main()

if (fork() 0) printf("Fred\n"
if (fork() @) printf("Fred\
return 0;

Question 2: Suppose that fred.txt is two lines. How many lines will
the following program print when standard output goes to the
screen?

int main()
{

int status;

printf (“Hi\

execlp(“cat", "cat",
exit(1);
else {
(void) wait(&status);

. printf("Done\n");

return @;

Question 3: Suppose I compile the following
program to bin/click3 and then do:

UNIX> bin/click3 > tmp.txt

How many lines will tmp.txt be?

int main()

int status;

printf("Hi\n");
if (fork() 0)

printf("I am a child.\n");
} else {

printf("I am no child.\n");
wait(&status);

return 0;

}

Question 4: Suppose T compile the following program to
bin/clickd and I then do:

UNIX> cat fred.txt
Fred: Line 1
Fred: Line 2
UNIX> bin/clickd > tmp.txt

How many lines will tmp.txt be?

int main()

int status;

printf("Hi\n");
if (fork()

execlp("cat”,
} else {

wait(&status);
printf("Done\n");

{
“cat", “fred.txt", NULL);

return 0;

Question 5: What will the first line of tmp.txt be?

* A "Hi"

* B."Done"
* C."Fred: Line 1"

* D."Fred: Line 2"

Answers to Clicker Questions

Question 1

‘The answer is three. After the first fork() call, there are two processes, but only one of them (the child)
returned 0 from fork(). So it prints a line. Now, there are two processes calling the second fork(), so after the
second fork() call, there are four processes and two of them (the child of the child, and the second child of the
parent) returned 0 from fork(). They each print a line, for a total of three lines.

Question 2

UNIX> bin/click2
Hi
Fred: Line 1
Fred: Line 2
Done
UNIX>

Since output is to the terminal, the stdout buffer s flushed at the end of every line. So the "Hi" line is indeed
printed after the printf() statement. The execlp() statement loads cat into the address space and runs it. It will
print the two lines of fred.txt and exit. Since the execlp() call is successful, its address space is gone, and it
doesn't return. Those other execlp() calls are never exccuted.

‘When the child exits, the parent prints "Done. The output is four lines.

Question 3

Suppose I compile the following program to bin/click3 and I then do:

UNIX> bin/click3 > tmp.txt
UNIX> cat tmp. txt
Hi
Iama child.
Hi
T am no child.
UNDG

As you can see, it prints four lines. That's because we're redirecting stdout to a
file, and the printf() call is buffered. The fork() call copies the buffer, and that is
why "Hi" is printed twice.

Questions 4 and §

UNIX> cat fred.txt

Fred: Line 1
Fred: Line 2

UNIX> bin/clickd > tmp. txt
UNIX> cat tmp.txt
Fred: Line 1
Fred: Line 2

Hi

Done
UNIX>

As in the previous question, the "Hi" line goes into a buffer. That buffer is indeed
copied to the child process in the fork() call. However, the execlp() call
overwrites the address spacc, so the buffer is gone. As result, the child never
prints "Hi".

So there are four lines -- two from the parent and two from the child.

‘The first line is "Fred: Line 1. Remember, the "Hi" is in the parent's buffer, and it
doesn' get printed until the parent exits. The parent has called wait(), so it doesn't
print its buffer until afier the child has printed its output.

