
Question 1: How many lines are printed when you run the program to the right? #include <stdio.h>

#include <stdlib.h>
Question 2: Now, suppose you uncomment the commented line. Then which of the #include <unistd.h>

following is true? Just type in the letter. #include <sys/wait.h>

* A: wait() is called too few times. There will be zombies. %"t main()

* B: wait() is called too few times. There will be orphans.

* C: wait() is called too few times, but the program will return.

« D: wait() is called the correct number of times. All is good. for (i

- wait() is called too many times, and the program will never return. L7t gL 5

* wait() is called too many times, and there will be a segmentation violation. f;izf,:‘(0

« G: wait() is called too many times. Some processes will return. Some won't. '

int i, status;

; i++) fork();
; i++) wait(&status);

rocess %d exiting.\n", getpid());

* H: wait() is called too many times, but the program will return.

Queslif)ns 3-5 refer to the code on the ljigh!, and use the following answer keys. #include <stdio.h>

You will answer two of these per question: #include <stdlib.h>
#include <unistd.h>

* A: The parent will become a zombie.
: The parent will become an orphan. int main(int argc, char xxargv)

« C: The parent will become neither an orphan nor a zombie. {
int t;

« D: It is undetermined what happens to the parent. o
t = (fork() == @) ? atoi(argv[1]) : atoi(argv[2]) ;

« E: The child will become a zombie. sleep(t);

« F: The child will become an orphan.) return 0;

* G: The child will become neither an orphan nor a zombie.

o H: It is undetermined what happens to the child.

Question 3: In the shell, I call: ./a.out 5 10

Question 4: In the shell, I call: ./a.out 10 5

Question 5: In the shell, I call: ./a.out 5 5

Question 1 Question 2

This example is similar to the example in the fork() lecturc notes. | It should be clear that wait() is called too many times. Al of those processes that were created when i=3 don't
It a fork bomb. Let's count the processes from the top of the for | call fork(), so they have no children. The ones that were created when i=2 called fork() once, so they only
loop: have one child each, not three. Etc.

« i = 0: There is just the parent, which calls fork() once. So, two | On the flip side, if you call wait() with no children, then wait() simply returns. So the answer is:
processes reach the bottom of the for loop with i = 0.

« i = I: Two processes start with i = 7 and they both call fork().
So, four processes reach the bottom of the for loop with i = /.
i = 2: Four processes start with i = 2 and they both call fork().

So, four processes reach the bottom of the for loop with i = 2.

|H: wait() i called too many times, but the program will return.

UNIX> gcc src/clicker2.c
UNIX> ./a.out + i = 3: Eight processes start with / = 3 and they both call Process 83010 exiting.

fork(). So, eight processes reach the bottom of the for loop Process 83012 exiting.
withi = 3. Process 83013 exiting.

Process 83009 exiting.
Process 83014 exiting.
Process 83011 exiting.
Process 83008 exiting.
Process 83007 exiting.

At that point, cach of the cight processes will exit the for loop and
print their lines. So cight lines will be printed:

UNIX> gee src/clickerl.c
WNIX> ./a.out | wc IR

8 2 184
UNIX>

Questions 3-5

So, the parent sleeps for atoi(argv[2]) seconds before exiting, and the child sleeps for atoi(argv[1]) seconds before exiting.

Question 3: The child dies first. So the parent is alive and not waiting. That means that the child is a zombie. The parent is neither a zombie nor an orphan. The answers are C and E.

Question 4: The parent dies first. So the child is alive, but has no parent. That means that the child is an orphan. The parent is neither a zombie nor an orphan. The answers are C and F.

Question 5: Since they sleep for roughly the same amount of time, it's undetermined whether the child or parent dies first. So we don't know if the child becomes a zombie as in Question
3 or an orphan as in Question 4. The answers are C and H.

You'll note that in all cases the parent is neither a zombie nor an orphan. That's because the shell is waiting for it!

