
Pointers are four bytes and pages are 4K. Here's the heap. Malloc() and free() have been struct flist {

implemented as described in the last class. The head of the free list is 0x58a00. (And if you don't int size;

remember, the definition of the free list structs are to the right). struct flist *flink;
struct flist *xblink;

You'll find the printout that I gave you to be helpful. i

Address Value Address Value Address Value Address Value

0x589a0 0x00010 0x589d0 0x00018 0x58a00 0x00030 0x58a30 0x00010
0x589a4 0x589d0 0x589d4 0x00000 0x58a04 0x589a0 0x58a34 0x589a0
0x589a8 0x58a00 0x589d8 0x589a0 0x58a08 0x00000 0x58a38 0x589c8
0x589ac 0x00018 0x589dc 0x589e0 0x58a0c @x58alc 0x58a3c 0x00020
0x589b0 0x00020 0x589e@ @x58a3c 0x58a10 0x58a24 0x58a40 0x00018
0x589b4 0x00018 0x589%e4 0x00018 0x58al14 @x58alc 0x58a44 0x589c0
0x589b8 0x589e0 0x589e8 0x00018 0x58al18 ©0x58a00 0x58a48 0x58al8
0x589bc @x58a08 0x589%ec @x589c0 0x58alc @x589cc 0x58a4c 0x00010
0x589c0 0x58a44 0x589f0 0x58alc 0x58a20 0x58a20 0x58a50 0x00008
0x589c4 @x589cc 0x589f4 0x00020 0x58a24 0x00030 0x58a54 ©0x589a0
0x589c8 0x00010 0x589f8 0x58a30 0x58a28 0x00018 0x58a58 ©x589a0
0x589cc @x589ec 0x589fc 0x58a08 0x58a2c 0x58a3c 0x58a5c @0x58a24

Please answer the following questions:
Question 1: How many bytes are in the first node (or memory chunk) on the free list?
Question 2: What is the memory address of the second node on the free list?

Question 3: How many bytes are in the second node (or memory chunk) on the free list?
Question 4: How many nodes are there on the free list?
Question 5: How many allocated chunks are there (memory chunks that have been malloc'd, but not freed)?

Question 6: If I call sbrk(0), what will it return (It is not 0x58a60)?

Answer to the clicker questions

To explain this question, first, identify the nodes on the free list:

* Node 1: Starts at 0x58a00 and is 0x30 = 48 bytes in size. Why 0x30? Because the first four bytes are the size. The next four bytes are flink, so

the next node on the free list is 0x589a0.

* Node 2: Starts at 0x589a0 and is 0x10 = 16 bytes in size. Its flink value is 0x589d0, so that's the next node on the free list.

* Node 3: Starts at 0x589d0 and is 0x18 = 24 bytes in size. Its flink value is 0x00000, so that's the end of the free list.

That gives you the answer to questions 1 - 4:

« Question 1: 0x30 or 48.

* Question 2: 0x589a0.

* Question 3: 0x10 or 16.
* Question 4: 3.

Now, to answer the rest of the question, it's helpful to differentiate the free memory from the allocated memory. I've done that below by coloring the

free memory blue:

Address Value Address Value Address Value

0x589a0 0x00010 0x589e@ @x58a3c 0x58a20 0x58a20
0x589a4 0x589d0 0x589e4 0x00018 0x58a24 0x00030
0x589a8 @x58a00 0x589e8 0x00018 0x58a28 0x00018
0x589ac 0x00018 0x589ec 0x589c0 0x58a2c @x58a3c
0x589b0 0x00020 0x589f0 0@x58alc 0x58a30 0x00010
0x589b4 0x00018 0x589f4 0x00020 0x58a34 0x589a0
0x589b8 @x589e0 0x589f8 @x58a30 0x58a38 0x589c8
0x589bc 0x58a08 0x589fc 0x58a08 0x58a3c 0x00020
0x589c@ 0x58a44 0x58a00 0x00030 0x58a40 0x00018
0x589c4 0x589cc 0x58a04 0x589a0 0x58a44 0x589c0
0x589c8 0x00010 0x58a08 0x00000 0x58a48 0x58al8
0x589cc @x589ec 0x58a@c @x58alc 0x58a4c 0x00010
0x589d0 0x00018 0x58a10 0x58a24 0x58a50 0x00008
0x589d4 0x00000 0x58a14 @x58alc 0x58a54 0x589a0
0x589d8 0x589a0 0x58a18 0@x58a00 0x58a58 0x589a0
0x589dc 0x589e0 0x58alc @x589cc 0x58a5c @x58a24

The allocated memory will be the memory in the black font. The first 4 bytes of a chunk will be the chunk's size. So:

* Chunk 1: Address = 0x589b0 and Size = 0x20 or 32 bytes. Therefore, the chunk goes right up to the free chunk at 0x589d0.

* Chunk 2: Address = 0x589e8 and Size = 0x18 or 24 bytes. Therefore, the chunk goes right up to the free chunk at 0x58200.

* Chunk 3: Address = 0x58a30 and Size = 0x10 or 16 bytes. This means that the next chunk starts at 0x58a40.

* Chunk 4: Address = 0x58a40 and Size = 0x18 or 24 bytes. This means that the next chunk starts at 0x58a58. Or not -- because there's not a valid
size there, and the heap "ends" after 0x58a5c. So this is the last chunk, and what we're printing are eight bytes that are on the same page, but
have not been assigned to the process by the operating system yet. This clues us into the answer to the last question.

« Question 5: 4

« Question 6: It will return 0x58a58. If our page sizes are 4K, then the addresses up to 0x58fff will not seg fault, but they are not officially
allocated to our process yet.

