
We are running a program, and when we look at its entry in /proc, we see: 

00010000-00011000 r-xp 00000000 00:22 126617690 /home/plank/a.out 
00020000-00021000 rw-p 00000000 00:22 126617690 /home/plank/a.out 
012cb000-012ec000 rw—p 00000000 00:00 0 [heap] 
7613a000-7673b000 r—p 00011000 b3:07 524429 /lib/arm-linux-gnueabihf/1d-2.19.so0 
763b000-76F3c000 rw-p 00020000 b3:07 524429 /lib/arm-linux-gnueabihf/1d-2.19.so 

7ebc3000-7ebe4000 rwxp 00000000 00:00 0 [stack] 

The program prints the return value of getpagesize(), and it is 4096 (0x1000). 

Question 1: Your program has a procedure called proc(). What is the smallest address greater than or equal to proc that will 
segfault when you try to read it? You can give an absolute address or a value relative to proc. 

Question 2: What is the smallest address greater than or equal to proc that will segfault when you try to write it? You can give an 
absolute address or a value relative to proc. 

Question 3: Can &edata be equal to 0x10f00? (Answer Yes or No). 

Question 4: Can &etext be equal to 0x10f00? (Answer Yes or No). 

Question 5: How many pages are in the heap (you can answer in hex or decimal)? 

Question 6: If I make enough procedure calls, the beginning of the stack, as reported by the entry in /proc, will be changed to some 
number smaller than 0x7ebc3000. (Answer T or F).



Answers to Clicker Questions 

¢ Question 1: 0x11000 -- this is the first address on the next page. 
¢ Question 2: proc. Since the code (text) segment disallows writes, trying to write any address in the code 

segment will cause a segmentation violation. 

¢ Question 3: No -- &edata is in the globals (data) segment, which is between 0x20000 and 0x21000. Note 

it is protected as read/write. 

¢ Question 4: Yes -- &etext is in the code (text) segment. 

¢ Question 5: The addresses of the heap are 0x12cb000-0x12ec000. That means 0x12ec-0x12cb = 0x21 
pages. In decimal, that's 33. 

¢ Question 6: False. The stack doesn't change in size. Instead, you will eventually segfault when you set the 

stack pointer to an address that is too low.


