
Your machine has four byte pointers and is little endian.

memcpy(dest, src, size) copies size bytes from src to dest.

The program to the right has ten lines of output.

* Question 1: What is line 1 of the output?
¢ Question 2: What is line 2 of the output?
¢ Question 3: What is line 3 of the output?

¢ Question 4: What is line 4 of the output?
* Question 5: What is line 5 of the output?
¢ Question 6: What is line 6 of the output?

¢ Question 7: What is line 7 of the output?
* Question 8: What is line 8 of the output?
* Question 9: What is line 9 of the output?
¢ Question 10: What is line 10 of the output?

Help: Suppose k = 0x1000. Then use this drawing:

3 | 2 | 1 | o |
. [[AR |

0x1000 | | | | |

[--mmmm [=-mmmem [-=mmmv [--mmmmm |
0x1004 | | | | |

[----mm- [----mm [mmmme [---mmm- |
0x1008 | | | | |

[---mmm- [---mmm- [--mmme [--mmmm- |
0x100c | | | | |

I I I

int main()

{
unsigned int k[4];

unsigned char *cp;

unsigned int *ip;

int i;

cp (unsigned char *) k;

ip k+2;
for (i = 0; i < 16; i++) {

ep[i] = i*16 + 15-i;
}

printf("0x%$x\n", cp[3]);
printf("0x$x\n", cp[7]);
printf("0x%x\n", k[0]);
printf("0x%x\n", *ip);

memcpy (cp+2, cp+10, 4);
printf("0x%$x\n", cp[3]);
printf("0x%$x\n", cp[4]);
printf("0x%$x\n", k[0]);
printf("0x%x\n", k[1]);

cp += 12;

ip = (unsigned int *) cp;

i=1ip - k;

printf("%d\n", 1i);

i = cp - (unsigned char ¥*)

printf("%d\n", i);

return 0;

/*

k;
Fi

Output

Output

Output

Output

Output

Output

Output

Output

Output

Output

line
line

line

line

line

line
line
line

line

line

*/

*/
. */

W

N
e

*/
*/
*/
*/ ®

<
a
u

. */

10. */

Clicker Questions -- Answers

From the first few lines, there are only 16 bytes in question -- k[0] through k[3]. Let's label them before they are set:

3 2 1 o
k[e] cpl@] through cp[3]
k[1] cpl4] through cp(7]

ip[e] kI[2] cpl8] through cpl11]
ip[11 kI[3] cpl12] through cpl15]

The for loop sets the bytes. Each cpl[i] will be of the form @xwy, where w is equal to i, and y is equal to 15-i. Here is what the 16 bytes look like:

3 2 1 0

k[@] ©ox3c @x2d Oxle @xof cpl@] through cpl3]
k[1] ~ 0x78 @x69 0Ox5a Ox4b cpl4] through cpl7]

ip[@] k[2] @xb4 Oxa5 ©0x96 @x87 cpl8] through cp[11]
ip[1] kI[3] eoxfe oxel ©oxd2 0xc3 cpl12] through cpl[15]

This allows us to answer the first four questions:

* Question 1: 0x3c

* Question 2: 0x78

* Question 3: 0x3c2d1edf

* Question 4: 0xb4a59687

The memcpy () statement will move the four bytes starting at index cp+10 to the four bytes starting at index cp+2. When it's done, here are the 16 bytes of

memory:

3 2 1 0

k[0] ©oxb4 @xa5 Oxle OxoOf cpl@] through cpl3]
k[1] ~0x78 @x69 ©Oxd2 @xc3 cpl4] through cpl[7]

ip[@] k[2] ©@xb4 ©Oxa5 ©0x96 Ox87 cpl8] through cpl11]
ip[1] kI[3] oxfe 6xel @xd2 @xc3 cpl12] through cp[15]

This allows us to answer the next four questions:

* Question 5: 0xb4

* Question 6: 0xc3

* Question 7: 0xb4a51e0df

* Question 8: 0x7869d2c3

cp and ip are now set to be (k+3). So the answer to question 9 is three.

‘When we do the pointer arithmetic by bytes rather than ints, the difference between cp and k is 12, so the answer to question 10 is 12.

