
Behold the procedure a():

typedef unsigned long UL;

void a(unsigned long *d,
unsigned int x*j,
unsigned int xk)

{
int i;
printf("d 0x%0161x\n", (UL) d);
printf("j 0x%0161x\n", (UL) j);
printf("k ;Ox%ols'lx\n\n", (UL) k);
printf("xj = 0x%@8x\n", *j);
printf("xk = 0x%08x\n\n", *k);

for (i =0; i <10; i++) {
printf("d[%d] = @x%0161x\n", i, d[i]);

}

‘When I run this, I get the following
output:

d = 0x00007f9cec401798
j = 0x00007f9cec4017e8
k = 0x00007f9cec401790

*j = 0xe3c017ff
*k = 0x00c01705

d[0] = 0x00007f9cec4017c8
d[1] = 0x00007f9cec4017e8
d[2] = 0x00007f9cec4017e0
d[3] = 0x00007f9cec401798
d[4] = 0x00007f9cec4017d8
d[5] = 0x00007f9cec4017b0
d[6] = 0x00007f9cec4017c8
d[7] = 0x00007f9cec4017e8
d[8] = 0x00007f9cec401798
d[9] = 0x00007f9cec4017d8

My machine has 8 byte pointers and is in
little endian.

Please answer the following questions:

Q1: What is the byte, in hex, at address

0x00007f9cec4017e8?

Q2: What is the byte, in hex, at address

0x00007f9cec4017e9?

Q3: What is the byte, in hex, at address

0x00007f9cec4017a8?

Q4: What will the following printf()

statement print?

|printf("0x9s081x\n", k[41);

Q5: What will the following printf()

statement print?

unsigned int xxx;

x = (unsigned int xk) d[5]
printf("@x%s08x\n", **x);

Answers Without Explanation

0xecd017e8

Q:
Q:
Q:
0
Q5: @xecd017c8

Answering without drawing out memory

My first set of answers will just use logic and knowledge of pointers. It's how I would answer the question if T were given this question as a clicker question. The second set of answers
requires more work - I'l draw out everything I know about memory. It's how T would answer the question on an exam, where I have more time and really want to make sure I get it right.

Question 1

This address is equal o j, so this is the first byte of *j. Remember that the machine is little endian, so the first byte of *j is Oxff.

Question 2

This is the second byte of *j; 0x17.

Question 3

We need to use d to answer this. The pointer value in the question is 16 bytes greater than d. So, this is the first byte of d[2]. Again - little endian -- so Oxe0.

Question 4

K[4] is equal to *(k+4). Since each element of k is four bytes, (k+4) is 0x00007f9cec4017a0. That's eight bytes more than d, so this is the first four bytes of d[1]: Oxecd017e8.

Question 5

The hardest question. d[5] is 0x00007f9cec4017b0, which is (d+3). So, *x is equal to d[3], which is 0x00007f9cec401798. That address is equal to d, so **x is equal to the first four bytes of
d[0]: Oxec4017¢8.

Answering by drawing out memory

On an exam, I would cut-and-paste d, and then add everything I know about d, j and k (and even x). I'll put *'s for bytes I don't know. I'll also label the bytes

with their byte number in hex, so that the little endian is less confusing. From this labeled drawing, I can get all of the answers. It may help you understand

them, too, so this is a good exercise for you:

What Addresss What Value

76543201
(k+0) 0x00007f9cec401790 k[1] k[o] = Oxkrkrikk00C01705

#x (k+2) (d+0) 0x@0007f9cec4d1798 kx k[3] k[2] d[0] = @x0@007fIC
(k+4) (d+1) 0x00007f9cec4017a0 k[5] k[4] d[1] 0x00007f9cec4017e8

(d+2) 0x00007f9cec4017a8 d[2] 0x00007f9cec4017e0
x (d+3) 0x00007f9cec4017b0 *x d[3] 0x00007f9cec401798

(d+4) ©x00007f9cec4017b8 d[4] 0x00007f9cec4017d8
(d+5) 0x00007f9cec4d17c0 x d[5] = 0x00007f9cecs017bo
(d+6) 0x00007f9cec4017c8 d[6] 0x00007f9cec4017c8
(d+7) 0x00007f9cec4017d0 d[7] 0x00007f9cec4017e8
(d+8) 0x00007f9cec4017d8 d[8] 0x00007f9cec401798
(d+9) ©x00007f9cec4017e0 d[9] = 0x00007f9cec4017d8

j 9x00007f9cec4017e8 *j = Oxkwkkkkkke3c017f

Question 2
Question 3
Question 4
Question 5

