Behold the procedure **a**():

```
typedef unsigned long UL;
void a(unsigned long *d,
       unsigned int *j,
       unsigned int *k)
  int i;
               = 0x%016lx\n", (UL) d);
  printf("d
 printf("j
               = 0x%016lx\n", (UL) j);
               = 0x%016lx\n\n", (UL) k);
= 0x%08x\n", *j);
  printf("k
 printf("*j
               = 0x%08x\n\n", *k);
  printf("*k
 for (i = 0; i < 10; i++) {
    printf("d[%d] = 0x%016lx\n", i, d[i]);
 }
}
```

When I run this, I get the following output:

8 8 0
-
0
8
8
0
8
8
0
8
8
8
8

My machine has 8 byte pointers and is in little endian.

Please answer the following questions:

Q1: What is the byte, in hex, at address 0x00007f9cec4017e8?

Q2: What is the byte, in hex, at address 0x00007f9cec4017e9?

Q3: What is the byte, in hex, at address 0x00007f9cec4017a8?

Q4: What will the following **printf**() statement print?

printf("0x%08lx\n", k[4]);

Q5: What will the following **printf**() statement print?

unsigned int **x; x = (unsigned int **) d[5] printf("0x%08x\n", **x);

Answers Without Explanation

Q1: 0xff Q2: 0x17 Q3: 0xe0 Q4: 0xec4017e8 Q5: 0xec4017c8

Answering without drawing out memory

My first set of answers will just use logic and knowledge of pointers. It's how I would answer the question if I were given this question as a clicker question. The second set of answers requires more work -- I'll draw out everything I know about memory. It's how I would answer the question on an exam, where I have more time and *really* want to make sure I get it right.

Question 1

This address is equal to **j**, so this is the first byte of ***j**. Remember that the machine is little endian, so the first byte of ***j** is 0xff.

Question 2

This is the second byte of *j; 0x17.

Question 3

We need to use d to answer this. The pointer value in the question is 16 bytes greater than d. So, this is the first byte of d[2]. Again -- little endian -- so 0xe0.

Question 4

k[4] is equal to *(k+4). Since each element of k is four bytes, (k+4) is 0x00007f9cec4017a0. That's eight bytes more than d, so this is the first four bytes of d[1]: 0xec4017e8.

Question 5

The hardest question. d[5] is 0x00007f9cec4017b0, which is (d+3). So, *x is equal to d[3], which is 0x00007f9cec401798. That address is equal to d, so **x is equal to the first four bytes of d[0]: 0xec4017c8.

Answering by drawing out memory

On an exam, I would cut-and-paste **d**, and then add everything I know about **d**, **j** and **k** (and even **x**). I'll put *'s for bytes I don't know. I'll also label the bytes with their byte number in hex, so that the little endian is less confusing. From this labeled drawing, I can get all of the answers. It may help you understand them, too, so this is a good exercise for you:

What			Addresss	What				Value							
										7 6 !	5 4	3	2	0 1	
	(k+0)		0x00007f9cec401790		k[1]	k[0]		=	0x*>	***	***	000	01	705	
*X	(k+2)	(d+0)	0x00007f9cec401798	**X	k[3]	k[2]	d[0]	=	0x00	0007	f9c	ec4	01	.7c8	
	(k+4)	(d+1)	0x00007f9cec4017a0		k[5]	k[4]	d[1]	=	0x00	0007	f9c	ec4	01	.7e8	
		(d+2)	0x00007f9cec4017a8				d[2]	=	0x00	0007	F9c	ec4	01	.7e0	
	х	(d+3)	0x00007f9cec4017b0			*X	d[3]	=	0x00	0007	f9c	ec4	01	798	
		(d+4)	0x00007f9cec4017b8				d[4]	=	0x00	0007	f9c	ec4	01	.7d8	
		(d+5)	0x00007f9cec4017c0			x	d[5]	=	0x00	0007	f9c	ec4	01	7b0	
		(d+6)	0x00007f9cec4017c8				d[6]	=	0x00	0007	f9c	ec4	01	7c8	
		(d+7)	0x00007f9cec4017d0				d[7]	=	0x00	0007	f9c	ec4	01	.7e8	
		(d+8)	0x00007f9cec4017d8				d[8]	=	0x00	0007	f9c	ec4	01	798	
		(d+9)	0x00007f9cec4017e0				d[9]	=	0x00	0007	f9c	ec4	01	.7d8	
		j	0x00007f9cec4017e8				*j	=	0x*>	****	***	e3c	:01	.7ff	
0	oction	1													

Question 1 Question 2 Question 3 Question 4

Question 5