
I have a program that starts as follows:

#include <stdio.h>

#include <stdlib.h>

typedef struct id {

int i;

double d;

} ID;

int main(int argc, char **argv)

{
ID x, ¥;
struct id z;

ID *p;
char s[20], *t;

Which of the following lines will not

compile (answer all that apply)?

A. "Fred" = s;

B. y->d = 3.14;

C. Xx =Yy;

D. p—>i = x.i;

E. s = t;

F. s = argv[l];

G. s[30] = 'J';
H. p = &2;

I. x.1 =y.d;

J. s[19] = x.1i;

Answers to Clicker Questions for CStuff-1 Lecture

COSC 360 - James S. Plank

A.

B.

"Fred" = s; This doesn't compile, because you can't set a string to anything.

This doesn't compile because y is a struct and not a pointer.
You need to do "y.d".

This compiles fine. It will copy y to x. I don't like it, but it's legal.

This compiles fine. Now, I'm not saying it's going to run correctly.
In particular, if we haven't initialized p, we'll be lucky to get a
segmentation violation with this. However, it compiles fine.

This doesn't compile. You can't set an array to anything.

This doesn't compile either for the same reason.

This will compile, but some compilers will give you a warning,
since you are accessing s out of bounds. Some compilers won't care.

Perfectly legal.

This is legal, too. It will convert y.d to an integer.

This is legal. It will convert x.i to a one-byte integer.

On question J, a student in 2024 aske the following question:

1 have a question about the last question for today’s clicker. You said that assigning x.i to s[19] will typecast it to a “I byte integer”.1am
not really sure what that means because to my understanding anything that is 1 byte is simply a char. How does the compiler know its an

integer if it’s one byte?

I’'m sorry for the confusion. A char is indeed a one-byte integer. It is either signed, in which case it ranges from -128 to 127, or it is unsigned, in

which case it ranges from 0 to 255. Sometimes students get confused because chars represent characters, but those characters are just integers.
Their character conversion is a standard called ASCII, which, for example, maps ‘a’ to 97 and ‘A’ to 65. They are not stored as characters, but

they are stored as one-byte integers, so the string “Aa” is really stored in three one-byte integers: { 65,97,0 }.

In the clicker question, the variable s is declared as:

‘Which means that 20 bytes are allocated for s, and when you access s[0], that will access the first of the 20 bytes, and when you access s[19], that

will access the last of the 20 bytes. When I say:

s[19] = x.i;

I am saying store x.i in the last of these 20 bytes. Since x.i is an integer, it is first converted to a char (one-byte integer) before being stored. So,
if x.i = 0x123, then 0x23 will be stored in s[19].

I hope that helps answer your question -- JP

