
COSC 340: Software Engineering 

Version Control with Git

Audris Mockus

Notes adapted from:

Michael Jantz

Pro Git, 2nd Edition by Chacon and Straub

Available online at: https://git-scm.com/book/en/v2/

COSC 340: Software Engineering 1

https://git-scm.com/book/en/v2/


What is Version Control?

• A system that records changes to a file or set of files over time so that 
you can recall specific versions later

‒ Often used to write software

‒ Useful for any collaborative document / project

• Version control systems (VCS) can:
‒ Revert specific files to a previous state

‒ Revert the entire project to a previous state

‒ Compare changes over time

‒ See who introduced an issue and when

‒ Reproduce *EVERY* state

COSC 340: Software Engineering 2



Types of Version Control

• Local Version Control
‒ Backup files

• VMS from VAX minicomputers

‒ tar, diff, patch

‒ Example: rcs, sccs
• co – chekout

• ci - checkin

• rcslog – see history

COSC 340: Software Engineering 3



Types of Version Control

• Centralized VCS
‒ Enables collaboration with developers 

on other systems

‒ Single server contains all versioned 
files, clients check files in and out 
from the central repository

‒ Risks from keeping all files in one 
central location

‒ Examples: CVS, Subversion, Perforce

COSC 340: Software Engineering 4



Types of Version Control

• Distributed VCS
‒ Clients fully mirror the repository

‒ Every clone is a full back-up of the data

‒ Examples: Git, Mercurial, Bazaar, Darcs

COSC 340: Software Engineering 5



Git Basics

• Git is actually a content tracking not version control: each commit 
represents a full filesystem

COSC 340: Software Engineering 6



Git Basics

• Nearly every operation is local
‒ Fast and easy to look up and compare files from the past

‒ Can work offline

• Git has integrity guarantees
‒ Everything is check-summed

‒ Check-summing is done by computing sha-1 hash based on contents of a file 
or directory structure

• Git generally only adds data
‒ No danger of really screwing things up

COSC 340: Software Engineering 7



Three States for Files in Git

• Committed
‒ Data is safely stored in your local database

• Modified
‒ File has been changed, but not committed to your database

• Staged
‒ A modified file is marked to go into your next commit snapshot

COSC 340: Software Engineering 8



Three Main Sections of a Git Project

COSC 340: Software Engineering 9



Tracked vs. Untracked Files

COSC 340: Software Engineering 10



Creating pull request

• Fork and clone students repository
‒ Fork using GUI or GH API https://github.com/COSCS340/students
‒ git clone https://github.com/youtghid/students

• Add a yourutkid.md file, commit, and push:
‒ cd students
‒ Edit yourutkid.md
‒ git add yourutkid.md
‒ git commit –m "added my interests"
‒ git push –u origin master

• Create and submit pull request
‒ Using GH GUI or API

COSC 340: Software Engineering 11



Working with Files

• add stages a file or directory (directories are added recursively)
‒ git add file.txt

• status tells you the status of files in the repo
‒ git status

‒ git status –s (short version)

• diff compares files
‒ git diff (compares working directory with staging area)

‒ git diff --staged (compares staged changes to last commit)

‒ git diff --cached (same as git diff --staged)

COSC 340: Software Engineering 12



Working with Files

• commit creates a new revision with your staged changes
‒ git commit (will open a text editor for you to document your commit)

‒ git commit –m "document string" (to avoid opening an editor)

‒ git commit –v (displays differences of what you're committing)

‒ git commit –a (automatically stage every file that is tracked and then commit)

• rm stages a removal of a file
‒ git rm file.txt

‒ git rm --cached file.txt (removes a file from the staging area)

• mv renames a file
‒ git mv file.txt new_file.txt

COSC 340: Software Engineering 13



The .gitignore File

• Tells git that some classes of files should not be automatically added 
or even shown as being untracked.

• Lists filename patterns that should be ignored

• Placed in the directory in which you want the rules to apply (rules are 
applied recursively to all subdirectories)

• List of useful .gitignore files here:
‒ https://github.com/github/gitignore

COSC 340: Software Engineering 14

https://github.com/github/gitignore


Viewing the Commit History

• log shows commit history
‒ git log

‒ git log -p (shows differences in each commit)

‒ git log -p -2 (shows differences of only the last two versions)

‒ git log --pretty=oneline (easy-to-read one line format)

‒ git log --pretty=format:"…" (allows you to specify your own format string)

‒ git log --since=2.weeks (show only commits in the last 2 weeks)

‒ git log --author="Audris Mockus" (show only commits by that autor)

‒ git log -Sstring (show only commits that added or removed the string 'string')

‒ git log -- file.txt (show only commits that modified file.txt)

COSC 340: Software Engineering 15



Undoing Things

• To add to a previous commit, use --amend:
‒ git commit –m "initial commit"

‒ git add forgotten_file.txt

‒ git commit --amend

• To unstage a staged file, use reset:
‒ git reset HEAD file.txt

• To unmodify a modified file, use checkout:
‒ git checkout -- file.txt

COSC 340: Software Engineering 16



Working with Remote Repositories

• remote shows your remote repositories
‒ git remote

• fetch gets data from your remote repository
‒ git fetch [remote-name] (leave remote-name blank to fetch from origin)

• push pushes data to the remote repository
‒ git push [remote-name] [branch-name]

‒ git push origin master (most common)

COSC 340: Software Engineering 17



Branching in Git

• Branching means to diverge from the main line of development
‒ Allows you to continue work without messing with the main line

• Git branching is lightweight
‒ Does not copy entire source tree

‒ Encourages workflows that branch and merge often

COSC 340: Software Engineering 18



Commit Objects

• A commit object that contains a pointer to the snapshot of the 
content you stored. The commit object includes:

‒ Author name and email

‒ Message attached to the commit

‒ Pointers to the commit(s) that came directly before it (its parents)
• Zero parents for the initial commit, 1 parent for a normal commit, multiple parents for a 

merge of two or more branches

COSC 340: Software Engineering 19



Commit Objects

COSC 340: Software Engineering 20

> git add README test.rb LICENSE
> git commit –m "The initial commit of my project

commit object directory tree
object

file blobs



Commit Objects Point Back to Their Parents

COSC 340: Software Engineering 21

• Next commit stores a pointer to the commit(s) that came before it



A Branch is a Pointer to a Commit Object

COSC 340: Software Engineering 22

• A branch in Git is a lightweight movable pointer to one of these commits
• The default branch in Git is master.



Branch Example

COSC 340: Software Engineering 23

• > git branch testing
• Creates a new pointer to the same commit you're currently on



Branch Example

COSC 340: Software Engineering 24

• The HEAD pointer tells you which branch you're currently on
• Currently still on master



Branch Example

COSC 340: Software Engineering 25

• > git checkout testing
• Switches HEAD pointer to point to an existing branch



Branch Example

COSC 340: Software Engineering 26

• > git commit –a –m "made some change"
• Next commit moves the testing branch forward



Branch Example

COSC 340: Software Engineering 27

• > git checkout master
• Moves the HEAD pointer back to the master and reverts your files

in the working directory to the master branch



Branch Example

COSC 340: Software Engineering 28

• > git commit –a –m "more changes to master"
• Changes now isolated in separate branches



Basic Branching and Merging

• An example workflow
1. Do work on a website

2. Create a branch for the new story you're working on

3. Do some work in the new branch

-- A critical issue needs a hotfix --

1. Switch to the production branch

2. Create a branch to add the hotfix

3. After testing, merge the hotfix branch, and push to production

4. Switch back to the original story and continue working

COSC 340: Software Engineering 29



Branch and Merge Example

COSC 340: Software Engineering 30



Branch and Merge Example

COSC 340: Software Engineering 31

> git checkout –b iss53
Switched to a new branch "iss53"



Branch and Merge Example

COSC 340: Software Engineering 32

> vim index.html
> git commit -a -m 'added a new footer [issue 53]'



Branch and Merge Example

COSC 340: Software Engineering 33

> git checkout master
Switched to branch 'master'
> git checkout -b hotfix
Switched to a new branch 'hotfix'
> vim index.html
> git commit -a -m 'fixed the broken email address'



Branch and Merge Example

COSC 340: Software Engineering 34

> git checkout master
> git merge hotfix
Updating f42c576..3a0874c
Fast-forward
index.html | 2 ++
1 file changed, 2 insertions(+)



Branch and Merge Example

COSC 340: Software Engineering 35

> git branch -d hotfix
Deleted branch hotfix (3a0874c).



Branch and Merge Example

COSC 340: Software Engineering 36

> git checkout iss53
Switched to branch "iss53"
> vim index.html
> git commit -a -m 'finished the new footer [issue 53]'
[iss53 ad82d7a] finished the new footer [issue 53]
1 file changed, 1 insertion(+)



Branch and Merge Example

COSC 340: Software Engineering 37

> git checkout master
Switched to branch 'master'
> git merge iss53
Merge made by the 'recursive' strategy.
index.html | 1 +
1 file changed, 1 insertion(+)



Branch and Merge Example

COSC 340: Software Engineering 38

• Result of three-way merge stored in new commit (C6)
• Delete iss53 branch after merge is complete



Merge Conflicts

• If you try to merge two branches with different changes to the same 
parts of the same file, git will report a merge conflict

> git merge iss53

Auto-merging index.html

CONFLICT (content): Merge conflict in index.html

Automatic merge failed; fix conflicts and then commit the result.

COSC 340: Software Engineering 39



Merge Conflicts

• When a conflict occurs, git pauses the commit process

> git status
On branch master
You have unmerged paths.
(fix conflicts and run "git commit")

Unmerged paths:
(use "git add <file>..." to mark resolution)

both modified: index.html

no changes added to commit (use "git add" and/or "git commit -a")

COSC 340: Software Engineering 40



Merge Conflicts

• Git adds standard conflict resolution markers:

<<<<<<< HEAD:index.html

<div id="footer">contact : email.support@github.com</div>

=======

<div id="footer">

please contact us at support@github.com

</div>

>>>>>>> iss53:index.html

COSC 340: Software Engineering 41



Merge Conflicts

• Conflicts should be resolved manually
‒ There are tools to assist with merging ('git mergetool')

‒ In our example, the resolved code might be:

<div id="footer">

please contact us at email.support@github.com

</div>

• To resolve conflicts, add the conflicted file(s) to the staging area
‒ > git add index.html

• To complete the merge, commit the resolved files
‒ > git commit –m "merge commit" 

COSC 340: Software Engineering 42



Git Workflow

• A standard set of best practices for developing a project with git
‒ Includes development model for branching / merging / deploying code

‒ Encourages good development practices (feature-driven development, code 
reviews, continuous delivery)

‒ Can be applied to large development teams or across different projects

COSC 340: Software Engineering 43



GitHub Flow

• Anything in the master branch is deployable
• To work on something new, create a descriptively named 

branch off of master
• Commit to that branch locally and regularly push your 

work to the same named branch on the server
• When you need feedback or help, or you think the branch 

is ready for merging, open a merge / pull request
• After someone else has reviewed and signed off on the 

feature, you can merge it into master
• Once it is merged and pushed to master, you 

can deploy immediately

COSC 340: Software Engineering 44


