
COSC 340: Software Engineering

Design and Architecture

Audris Mockus

(adapted from slides by Ravi Sethi, University of Arizona)

COSC 340: Software Engineering 1

Concepts from Building Architecture

• Draw on centuries old traditions of building architecture

• Similarities between building and software architecture
‒ Principles: attributes of good architecture

‒ Structure: components and their relationships

‒ Views: tailored to intended purpose and audience

‒ Patterns: core of a solution to a recurring problem

• Differences
‒ Software is both static and dynamic

‒ Software is intangible

‒ Some software is easy to change

COSC 340: Software Engineering 2

De Architectura: Ten Books on Architecture

• Treatise on architecture by Vitruvius, Roman architect, 1st century BC
‒ Town planning, architecture, civil engineering

‒ Building materials

‒ Temples

‒ Civil buildings

‒ Domestic buildings

‒ Pavements and decorative plasterwork

‒ Water supplies and aqueducts

‒ Sciences: geometry, measurement, astronomy

‒ Machines: water mills, drainage, hoisting, pneumatics

COSC 340: Software Engineering 3

Principles from Classical Architecture
by Vitruvius, Roman Architect, 1st Century BC

• Utility
‒ Does the building conveniently serve its intended purpose?

• Strength
‒ Will the building stand? Are the foundations solid and have the materials

been wisely selected?

• Beauty
‒ Is the appearance of the building pleasing and in good taste? Are the

elements of the building in due proportion

COSC 340: Software Engineering 4

Principles from Classical Architecture
Software Equivalents for Vitruvius' Principles

• Utility
‒ Does the system meet its requirements?

• Strength
‒ Is the system robust? Will it scale and perform? Is the technology

appropriate?

• Beauty
‒ Is the implementation of the system elegant? Is it easy to understand and

modify?

COSC 340: Software Engineering 5

COSC 340: Software Engineering 6

Hagia Sophia, built 532 – 537,
in Constantinople (Istanbul)

http://image.pbs.org/video-assets/pbs/nova/163020/images/mezzanine_994.jpg

Principles from Classical Architecture
Example: The Hagia Sophia

• Utility
‒ Fulfills Emperor Justinian I’s wish for a majestic church, grander and more

imposing than all its predecessors

• Strength
‒ Stands tall, almost 1500 years after it was built

‒ The main dome was re-architected, but that was in 562 AD

• Beauty
‒ Intrinsic to its architecture and proportions

‒ The main dome soars 182 feet from the floor

‒ As a museum, it attracts millions of visitors every year

COSC 340: Software Engineering 7

Architectural Views

• Utility, strength, and beauty are different perspectives on the same
architecture

• An architectural view focuses on some aspect of a given architecture
‒ Views are tailored to the intended purpose and the intended audience

‒ Typically a view outlines how the architecture solves a problem

• No one view captures everything about an architecture

COSC 340: Software Engineering 8

Hagia Sophia: Structural View

COSC 340: Software Engineering 9

Note the round main dome and half-domes

Pendentive: Round Dome on a Square Base

• A pendentive distributes the load of the dome onto the base

COSC 340: Software Engineering 10

Hagia Sophia Dome Re-architected

• The original dome collapsed during the earthquake of 558

• The rebuilt dome is 30 feet higher to better distribute its weight to
the supporting walls

• The re-architected dome is still standing, ~1500 years later

COSC 340: Software Engineering 11

Architectural Patterns

• First studied by architect and urban planner Christopher Alexander

• A pattern is a problem that occurs over and over again, together
with "the core of the solution to that problem"

• Applications to Software
‒ Inspired object-oriented design patterns

‒ Software architecture patterns

‒ Pattern Languages of Programming conferences

‒ Extreme Programming was influenced by Alexander’s work, especially the
belief that the occupiers of a building should design it

‒ …

COSC 340: Software Engineering 12

Alexander's Patterns

• Context
‒ Each pattern has both a larger and a smaller context

‒ e.g., larger: roof completes a room, a room is part of a building, …

• Problem
‒ Some fundamental aspect of a design

‒ e.g., the design of roofs for a cluster of buildings

• "Core" of a Solution
‒ Guidance for designing a specific structure

‒ e.g., high ceilings for public rooms lower for smaller gatherings very low in
rooms or alcoves for one or two people

COSC 340: Software Engineering 13

Software Architecture

• SEI has collected over 200 definitions of software architecture
‒ "In practice, the terms 'architecture,' 'design,' and 'implementation' appear to

connote varying degrees of abstraction in the continuum between complete
details ('implementation'), few details ('design'), and the highest form of
abstraction ('architecture').

‒ "But the amount of detail alone is insufficient to characterize the differences,
because architecture and design documents often contain detail that is not
explicit in the implementation (e.g., design constraints, standards,
performance goals)."

COSC 340: Software Engineering 14

Distinction between Design and Architecture

• Architecture is part of the design of a system
‒ And is thus a subset of design

COSC 340: Software Engineering 15

Architecture deals with
relationships among components,

externally visible properties

Design includes the internal
structure of components

Interface

Internals

System Components

Role and Benefits of Software Architecture

COSC 340: Software Engineering 16

Example: Conway's Law

• "Any organization that designs a system (defined broadly) will
produce a design whose structure is a copy of the organization's
communication structure." – Melvin Conway

• Sociological Observation
‒ Two software modules A and B …

‒ cannot interface correctly with each other …

‒ unless the designer of A communicates with the designer of B.

• And so:
‒ the interface structure of the system necessarily reflects …

‒ the social structure of the organization that produced it

COSC 340: Software Engineering 17

Example: Identifying Potential Security Risks

• Architecture
‒ Apps use features provided by iOS

‒ Some of the API’s are for Apple’s own use (called private APIs)

‒ Enterprises may use private APIs for their own use

• Qihoo distributed apps that used private APIs
‒ Misuse of private APIs can pose a security risk

‒ Hence, apps from Qihoo were banned by Apple

COSC 340: Software Engineering 18

Example: Architecture and Work Assignment

• Microsoft used a modular architecture to accelerate development of
its browser in 1996

• Allowed team to develop sub-components in parallel and allowed the
system to be delivered sooner

• "If someone asked what the most successful aspect of [Internet
Explorer 3.0] was, I would say it was the job we did in
‘componentizing’ the product.“

‒ Development team member, IE 3.0. (Source: MacCormack 2001).

COSC 340: Software Engineering 19

4+1 View Model

COSC 340: Software Engineering 20

4+1 View Model

• Logical Views
‒ Focus on structures that support

requirements and end-user functionality

• Development Views
‒ Focus on modules in static source

• Process Views
‒ Focus on dynamic or runtime processes

• Physical views
‒ Focus on the configuration and physical distribution of the system e.g.,

allocation of processes to servers

COSC 340: Software Engineering 21

Information Hiding and Modules

• Goals of modularization: make the system easier to:
‒ Understand, integrate and build, maintain (modify), test, verify, develop in

collaboration with others

• Information hiding principle
‒ Hide independently-changeable information, such as design decisions, in

independently-changeable modules

‒ Aim for well-defined interfaces that are stable over time that hide module
implementations

• Modules secrets
‒ Design decisions hidden inside a module

COSC 340: Software Engineering 22

Information Hiding Example:

• Software for counting items for store inventory

• Design decisions
‒ How are counts represented?
‒ Where are they stored?
‒ How is top selling item identified?

• Decisions can be hidden in modules

• Interface to the module can answer questions about the counts
‒ What is the count for a particular item?
‒ What item has the highest count?

• Allows you to change implementation without changing the interface

COSC 340: Software Engineering 23

Coupling and Cohesion

• Aim for loose coupling and high cohesion

• Coupling is the degree to which modules are inter-related
‒ Loosely coupled if interaction is only through interfaces

‒ Tightly coupled if the implementation of one module depends on the
implementation of another

24

Coupling Modules

Message Pass messages through their interface

Subclass Inherit methods and data from a superclass

Global Two modules share the same global data

Content One relies on implementation of the other

Coupling and Cohesion

• Aim for loose coupling and high cohesion

• Cohesion is the degree to which the elements of a module
belong together

‒ High cohesion if module has one secret and all elements relate to that secret

‒ Low cohesion if it has elements that are unrelated

25

Cohesion Group elements based on

Functional One secret (e.g. parsing)

Sequential Process steps (a la pipes in Unix)

Informational Data that is manipulated

Temporal Order in which events occur

Coincidental Elements have little to do with each other

Microsoft Case Study

• Concepts of information hiding, coupling / cohesion, object oriented
design date back to the 1970's

• Software developers still face problems

• 2005 survey by Venolia, DeLine, and LaToza asked software
architects, developers, and testers at Microsoft what problems they
face in developing software

• 7 of top 8 problems relate to modular structure of system

COSC 340: Software Engineering 26

The following is "a serious problem for me"

• Understanding the rationale behind a piece of code 66%

• Having to switch tasks because of ... teammates or manager 62%

• Being aware of changes to code elsewhere that impact my code 61%

• Finding all the places code has been duplicated 59%

• Understanding code that someone else wrote 56%

• Understanding the impact of changes I make on code elsewhere 55%

• Understanding the history of a piece of code 51%

• Understanding who “owns” a piece of code 50%

COSC 340: Software Engineering 27

Module Descriptions and Hierarchy

• A realistic system can have hundreds of modules
‒ Finding relevant modules is difficult beyond a dozen or so

• Solution
‒ Group related modules into a tree-structured hierarchy

‒ Provide descriptions of the modules written in plain English

• In a module hierarchy, the secret of a child module is a subsecret of
its parent module

COSC 340: Software Engineering 28

COSC 340: Software Engineering 29

Module Descriptions

• Module Interface Specification
‒ Defines services provided and services needed

‒ Defines syntax and semantics for accessing services

‒ Defines data types, program effects, ...

‒ Defines test cases

‒ Records design decisions and implementation notes

• Module Guide
‒ Textual description of the module hierarchy, with each module described by

its secret

COSC 340: Software Engineering 30

Example: Visual Communication App

31

Another View of the Same App

COSC 340: Software Engineering 32

A Module Hierarchy

COSC 340: Software Engineering 33

• Note: modules can use other modules across subtrees in the hierarchy
• e.g. contact cards can use contacts, without knowing how contacts are stored

Module Guide: Description in Plain English

• The purpose of a module guide:
‒ Provide an overview of the system

‒ Bring out the context and assumptions behind the design approach

‒ Describe the responsibilities and behavior of the modules

• The guide supplements, not replaces, a specification of module
interfaces

COSC 340: Software Engineering 34

Template for a Module Guide

• Module Name
‒ Textual description

• The responsibility of the module

• Overview and context for the service and the secret of the module

‒ Service Provided
• Service provided to the other modules through the module interface

‒ Secret
• Service provided to the other modules through the module interface

• Any secondary design decisions that are needed for the implementation

‒ Error and Exception Handling
• List of possible errors and exceptions

COSC 340: Software Engineering 35

Modules Summary

• Information hiding modules
‒ Hide design decisions (secrets)
‒ They can be viewed as black boxes with abstract interfaces

• Module hierarchy
‒ Organizes information hiding modules into a tree structure
‒ Described in the module guide

• Examples: Using modules services
‒ Abstract data types: use data without knowing its representation
‒ GUI creation environments: construct user interfaces without knowing how to

display
‒ Protocols: send and receive data – but hide channel details
‒ Methods: invoke methods without knowing their implementation

COSC 340: Software Engineering 36

Family and Product Lines

• "We consider a set of programs to constitute a family whenever it is
worthwhile to study programs from the set by first studying the
common properties of the set and then determining the special
properties of the individual family members" – David L. Parnas

• Software product line
‒ Programs specifically designed and implemented as a family

• Software Product Lines Conference Hall of Fame
‒ Honors organizations for commercially successful product lines

‒ Link

COSC 340: Software Engineering 37

http://splc.net/fame.html

Examples of Product Families

• iPods

• Airbus Airplanes

• Linux

• IBM 360

• Portable C Compiler

• Web Browsers

COSC 340: Software Engineering 38

Product Lines

• A family of products designed to take advantage of its
‒ Commonalities: common aspects of the family members, and

‒ Variabilities: predicted range of differences between members

• A product line may be decomposed into sub-families
‒ Each sub-family contributes a member to members of the product line

‒ Sub-families may themselves be product-lines

COSC 340: Software Engineering 39

Product Line Engineering
Underlying Assumptions

• Redevelopment Hypothesis
‒ Most software development is mostly redevelopment

• Oracle Hypothesis
‒ It is possible to plan for changes that are likely to be needed

• Organizational Hypothesis
‒ It is possible to organize both software and the organization that develops it

so as to take advantage of predicted changes

COSC 340: Software Engineering 40

Product Line Engineering
Initial Investment

• Requires a high initial investment for
‒ Identifying commonalities and variabilities

‒ Creating a business case that encompasses multiple products

‒ Developing a modular architecture that hides variabilities

‒ Building test plans that span products

‒ Conducting additional training for developers and managers

• Management support is essential
‒ Projects that lack management support often fail to deliver improvements

promised by product-line engineering

COSC 340: Software Engineering 41

Economics of Product Line Engineering

COSC 340: Software Engineering 42

• Initial investment pays off as members of the product family are developed

Economics of Product Line Engineering

COSC 340: Software Engineering 43

• Crossover point of when investment for product families starts to pay off

Economics of Product Line Engineering

COSC 340: Software Engineering 44

• Bell Labs experience with several projects: crossover between 2 and 3

Economics of Product Line Engineering

COSC 340: Software Engineering 45

• A more realistic picture

Unix Portability

• In 1977, Unix ported from the PDP-11 to the Interdata-8/32

• The portability of Unix led to Open Systems from multiple vendors in
the 1980s

‒ Open System refers to some combination of interoperability, portability, and
open software standards

COSC 340: Software Engineering 46

Why Study Unix Portability?
The portability of Unix has enormous significance for computing

• Illustrates information hiding
‒ Unix was written in a high-level language (C) to hide the machine

‒ The Portable C Compiler hid language dependencies in the front end and
machine dependencies in the back end

• Case Study: illustrates design decisions
‒ Dealing with inherent machine dependencies

‒ Performance trade-offs

• Well written account

COSC 340: Software Engineering 47

The Unix Family
“The real growth of Unix began only after portability had been achieved.”

48

Portability of C Programs

• Although portability was not a goal for C, Unix applications written in C
ported to other machines with relative ease

• "the operating system interface caused far more trouble for portability
than the actual hardware or language differences them-selves"

49

Unix Portability Project: Goals

• Write a portable C Compiler
‒ "To write a compiler for C that could be changed without grave difficulty to

generate code for a variety of machines."

• Refine C for portability
‒ "To refine and extend the C language to make most C programs portable to a

wide variety of machines, mechanically identifying non-portable
constructions where possible."

• Rewrite and port Unix
‒ "To revise or recode a substantial portion of UNIX in portable C, detecting and

isolating machine dependencies, and demonstrate its portability by moving it
to another machine."

COSC 340: Software Engineering 50

Portable C Compiler: Module Hierarchy

COSC 340: Software Engineering 51

Portable C Compiler: Information Hiding

• Front end hides the source language
‒ Generates an intermediate representation consisting mostly of expression trees and

stylized code for subroutine entry/exit
‒ 13% machine dependent lines; e.g., for subroutine entry/exit

• Back end hides the target machine
‒ The back end source is surprisingly machine independent (70+%)
‒ Even in the machine dependent routines, only a third to a half vary across machines.

• Assessment
‒ Within months the compiler was running on a multitude of machines
‒ A Fortran 77 compiler was created by reusing back ends
‒ In the machine independent portions, a bug could be fixed in all versions almost

mechanically

COSC 340: Software Engineering 52

Unix Portability Project

• "Transportation of an operating system and its software between
nontrivially different machines [was] rare, but not unprecedented"

COSC 340: Software Engineering 53

Unix Portability Project

54

• ~ 50,000 lines in C

‒ 20,000 identical between machines

• ~ 7,000 lines in C on the Interdata

‒ 350 differed, PDP-11 to Interdata

• ~ 1,100 lines in C, machine specific

‒ Interrupts, I/O, error handling

• ~ 800 lines of assembly (Interdata)

‒ Most of the bugs appeared here

Unix Portability Project: Experience

• High portability achieved
‒ The operating system was 95% the same on the two machines, outside of

hardware primitives and device drivers

‒ Inherently machine-specific software – compiler, assembler, loader, debugger
was 75-80% unchanged

• Limitations to portability
‒ Machine model: tradeoff between using powerful machine features and

maintaining machine independence

‒ With scale, algorithms need to be revisited; e.g., sorting ten items is different
from sorting millions

COSC 340: Software Engineering 55

Self-Hosting Programming Languages

• Self-hosting principle: a programming language should allow enough
expression that it can be implemented in its own language

‒ e.g., a Pascal compiler written in Pascal is self-hosting, but a Pascal compiler
written in C is not.

• Allows the language developer to use features of the language for
which they are responsible

‒ Creates a virtuous cycle for language implementers

‒ Need expressive language features to develop performance-critical parts of
the language implementation

‒ Often leads to innovative ways to efficiently implement language features

COSC 340: Software Engineering 56

Self-Hosting Java

• Allows the runtime implementation to take advantage of HLL features
‒ Automatic memory management / memory safety features

‒ Standard threading / concurrency libraries

‒ Exceptions and exception handling routines

‒ etc. …

• Simplifies interface between runtime and application code

• JIT-compilation of runtime methods

COSC 340: Software Engineering 57

Bootstrapping

COSC 340: Software Engineering 58

• A T-Diagram depicts a compiler from source language S to target
language T, written in implementation language I

Creating the Bootstrap JVM

59

Creating the Self-Hosting Runtime System

60

Architectural Patterns

• An architectural pattern is
‒ a package of design decisions that is found repeatedly in practice, has known

properties that permit reuse, and describes a class of architectures
• from Software Architecture in Practice by Bass, Clements, and Kazman (2013)

• Patterns are abstracted from software found in practice
‒ What is and is not a pattern depends on your point of view

‒ There is no complete catalog

• Experienced architects typically adapt patterns
‒ Either consciously or unconsciously work with patterns

‒ Or, simply mimic successful solutions

COSC 340: Software Engineering 61

Model View Controller

• Originally developed for Smalltalk at Xerox PARC by Trygve Reenskaug
in 1979, the pattern has been widely adopted for web applications

• The Smalltalk group produced the first WIMP (Windows, Icon, Mouse,
Pointer) user interface

62

Model View Controller Pattern

• Core of a solution
‒ Model supports application behavior

hides state of the application

‒ View manages presentation to the user

hides the display device

‒ Controller interprets user actions

hides mapping from events to state changes

• Traditional Examples
‒ Graphical User Interfaces

COSC 340: Software Engineering 63

Application of Model View Controller
Labs and production versions of the Avaya Flare Experience

• Production Version
‒ Cards show participants

‒ Set up a communication
session by dragging cards
into the spotlight

64

• Lab Version
‒ Cards show participants in a

communication session

‒ Box encloses participant cards

Application of Model View Controller

• Is this a good design? Should the session related modules be grouped together?

COSC 340: Software Engineering 65

Application of Model View Controller

• No! Different design decisions

COSC 340: Software Engineering 66

How to track current
sessions, participants, the

modes they are using

How to present
sessions:

spotlight or box

Who to add,
who to drop

Model View Controller

COSC 340: Software Engineering 67

Method Invocations

Model-View-Presenter

• Taligent's (IBM) take on MVC for Java and C++

• The approach
‒ Breaks the problem into two questions

• "How do I manage my data?"

• "How does the user interact with my data?"

‒ Refines each question to further decompose the problem

COSC 340: Software Engineering 68

Model-View-Presenter: Data Management
Refinement of "How do I manage my data?"

69

Model-View-Presenter: User Interface
Refinement of "How does the user interact with my data?"

• How do I display my data?
‒ Role of the View

• How do events map into changes in my data?
‒ Relate user gestures to changes in the data (Interactor component)

• How do I put it all together?
‒ Generalizes the Controller; now called the Presenter

‒ The Presenter interprets events and gestures initiated by the user and
provides logic to map them onto the appropriate command

COSC 340: Software Engineering 70

Model-View-Presenter: User Interface
Refinement of "How does the user interact with my data?"

COSC 340: Software Engineering 71

Model-View-Presenter: Summary

COSC 340: Software Engineering 72

Model-View-Presenter: Distributed Applications
"How do I partition my application between client and server?"

COSC 340: Software Engineering 73

Layer Pattern

• Core of a solution
‒ Group modules into sets (layers)
‒ Modules interact through their interfaces
‒ Modules in each layer use modules in the same layer or the layer

immediately below (strict layering)

• Uses Relation
‒ If A uses B, B must be present & satisfy its spec for A to satisfy its spec
‒ But lower layers have no dependency on upper layers

• Traditional Example
‒ TCP/IP and the IP stack
‒ Virtual machines

COSC 340: Software Engineering 74

Principles of Layered Architecture

• Abstraction
‒ Abstract away details of the lower layers

• Encapsulation
‒ Do not expose implementation details at layer boundaries

• Clearly defined functional layers
‒ Separation between functionality in each layer is clear

• High cohesion
‒ Well-defined responsibility boundaries for each layer

• Reusable
‒ Lower layers have no dependency on upper layers and are reusable

• Loose coupling
‒ Communication between layers is always through well-defined interfaces

COSC 340: Software Engineering 75

Layering: TCP/IP

• The layering of TCP and IP was not in the original proposal

• "These changes in the Internet design arose through the repeated
pattern of implementation and testing that occurred before the
standards were set."

‒ Clark (1988)

COSC 340: Software Engineering 76

Internet Protocol Stack: TCP/IP

• Key Architectural Decision
‒ The intelligence is in the Application Layer

‒ The routing and transport of packets through the Internet are in the
layers below

77

• Application programs pass data (packets) to the
Transport layer for delivery

• TCP provides reliable app-to-app communication.
It passes packets through the Internet Layer

• IP provides best effort packet delivery. It uses a
routing algorithm to select the next hop

TCP/IP Protocol Stack

• Each layer experiences peer-to-peer service (red dashed lines)
• The actual flow of packets is through the layers (black solid lines)

78

Why TCP and IP Were Layered
They were originally a single protocol

• Initial concept of TCP (1973)
‒ General enough that it could provide any needed type of service

• But …
‒ The cross-Internet debugger, XNET, needed access to whatever got through in

times of stress or failure – better something (best effort) than nothing
(insisting on every byte being delivered in order).

‒ For real-time delivery of digitized speech for teleconferencing the need was to
minimize delay. Some dropped packets could be smoothed over. The biggest
source of delay was the reliable delivery mechanism.

• So, TCP and IP were separated
‒ TCP supports reliable delivery, but packets might be delayed
‒ IP supports speedy delivery, but packets might be dropped

COSC 340: Software Engineering 79

Layered Architectures: Assessment
Strict layering has proven to be enormously flexible for Internet protocols

• Benefits:
‒ Support designs with increasing levels of abstraction (thereby partitioning a

complex problem)

‒ Support enhancement without changing the other layers (e.g. new
application layer protocols above TCP/IP)

• Tradeoff:
‒ Performance – adding headers going down the Internet protocol stack at the

source and then stripping them going up the stack at the destination adds
overhead

‒ Strict layering favors clarity for user over ease for designer. e.g. the designer
of a new protocol may need to separate it into layers to fit the IP suite

COSC 340: Software Engineering 80

Variants of Layering

• Be explicit with the uses structure when drawing layer diagrams, as in
the explanations below these diagrams.

81

Dataflow: Pipe and Filter

• “We should have some ways of coupling programs like a garden hose
– screw in another segment when it becomes necessary to massage
data in another way.”

‒ Doug McIlroy, October 11, 1964

COSC 340: Software Engineering 82

Pipe-and-Filter Pattern

• Core of a solution
‒ Assemble modules into a pipeline, where the output of one module becomes

the input to the next

‒ Modules are independent and unaware of each other

‒ Not limited to linear pipelines

‒ Elements of a pipeline are co-routines; they can execute in parallel,
constrained only by availability of input

• Traditional Examples
‒ Unix pipelines (which are linear)

‒ Exception: tee command copies input to two output streams

COSC 340: Software Engineering 83

Unix Pipeline

> tr -C a-zA-Z ‘\n’ | tr A-Z a-z | sort | uniq

COSC 340: Software Engineering 84

Google Dataflow
Introduced June 2014

• Ready for unbounded, unordered, global-scale datasets
‒ e.g. Web logs, mobile usage statistics, and sensor networks

• Propose a fundamental shift
‒ Stop trying to groom unbounded datasets into finite pools that eventually

become complete

‒ Instead, assume that we will never know if/when we have seen all of our data

• Dataflow replaces Map-Reduce

COSC 340: Software Engineering 85

Google Dataflow
Sample Application

• Streaming video provider wants to display video ads
‒ Bill advertisers for the amount of advertising watched

‒ Platform supports online and offline views for content and ads

• Requirements
‒ How often and for how long are videos being watched, with which

content/ads, and by which demographic groups?

‒ Want all of this information as quickly as possible, to adjust budgets and bids,
change targeting, tweak campaigns, and plan future directions in as close to
real time as possible

COSC 340: Software Engineering 86

Google Dataflow: Word-Count Pipeline
Tutorial example from the website

COSC 340: Software Engineering 87

Google Dataflow
Dealing with unbounded streams of data

• Text lines to words can be done on the fly

• How do you count words in an unbounded stream
‒ There is no end to the stream

COSC 340: Software Engineering 88

Google Dataflow
Dealing with unbounded streams of data

• Text lines to words can be done on the fly

• How do you count words in an unbounded stream?
‒ There is no end to the stream!

• Settle for windowing
‒ Fixed windows

‒ Sliding windows

‒ Session windows

COSC 340: Software Engineering 89

Design and Architecture Summary

• What is Software Architecture?
‒ Literally hundreds of definitions, e.g. see SEI's website

• An architecture is
‒ a set of structures (each structure answers one or more questions)

• To structure is to partition the whole into parts
• and specify the relations among the parts

‒ that satisfy the requirements
• functional requirements; end-user features, …
• other engineering requirements: 'ilities
• non-functional requirements: legal, regulatory, environmental

• A good architecture is elegant
‒ The system is easy to modify – if you can modify it, you can understand it

COSC 340: Software Engineering 90

http://www.sei.cmu.edu/architecture/start/glossary/community.cfm

Design Concepts
Fred Brooks, The Design of Design

• Great designs have conceptual integrity
‒ unity, economy, integrity

‒ You can develop a mental model about the design that lets you make
predictions about how it will operate; if they predictions come true, we often
take delight in the use of the design

• Gives a design team something to talk about
‒ Unity of concept is essential and it can only be achieved though lots of

conversation; what’s in scope, what’s out? what concepts does this design
make use of? how do they relate?

• Example, "everything's a file" in Unix systems

COSC 340: Software Engineering 91

Kinds of Design

• Routine
‒ Standard models exist and are routinely (re)used
‒ Short suspension bridges
‒ Client-server

• Adaptive
‒ Standard models can be adapted to fit the need (Patterns)
‒ Tandem bicycle
‒ In-memory database

• Original
‒ Take a deep breath!
‒ First skyscraper
‒ First PC

COSC 340: Software Engineering 92

Conclusion

• Design is a process of discovery and satisficing*
‒ Investigate design decisions, but be prepared to backtrack and seek

alternatives

‒ Leave a trail for others to follow (issues and resolutions)

‒ Satisfice: the space is too big for complete exploration

• Use standard models when feasible
‒ Adapt as necessary

‒ The rewards of innovation come with risk

* satisficing: to act in such a way as to satisfy the minimum requirements for achieving a particular result

COSC 340: Software Engineering 93

Backup

COSC 340: Software Engineering 94

What is Architecture?

• "The art or science of building; esp. the art or practice of designing
and building edifices for human use, taking both aesthetic and
practical factors into account."

‒ The Shorter Oxford English Dictionary, Fifth Edition, 2002

‒ Merriam Webster Online Dictionary

• "In wider use, the term 'architecture' always means 'unchanging deep
structure.'"

‒ Stewart Brand, How Buildings Learn

COSC 340: Software Engineering 95

