COSC 325: Introduction to Machine Learning

Dr. Hector Santos-Villalobos

Dr. Santos

Lecture E1: Exam 1 Review

Machine Learning vs Computer Programming

- Traditional Programming:
	- Algorithms are sequences of instructions that are carried out to transform an input into an output
	- Fundamentally, they are lists of instructions
- Machine Learning:
	- The list of instructions is *Learned* from data
	- Useful when the sequence of instructions is difficult to define
	- Examples
		- Facial recognition
		- Autonomous driving

AI vs Machine Learning

Artificial General Intelligence

Computers "mimic" how humans learn.

Artificial Intelligence

Computers mimic human behavior.

Machine Learning

Ability to learn without explicit hand-made rules.

Deep Learning

Automated extraction of patterns/features from raw data using multi-layer neural networks.

A simple neural network output laver

Teaching computers how to **learn a task** directly from **data**.

Figure inspired on MIT 6.S191 course slide.

Generalization

- A key component of "learning" is the ability to generalize
	- Take information that has been learned previously and apply it to new but related scenarios
- For a technique to be considered a machine learning approach, it *must* be able to generalize
- Thus, we must evaluate its ability to generalize

Categories of Machine Learning

Slide credit: Dr. Raschka

Machine Learning Categories

Supervise Learning

- Trained on "Labeled dataset"
- Needs pairs of inputs and outputs (ground truth)

Unsupervised **Learning**

- The algorithm discovers patterns and relationships in unlabeled data
- It needs inputs only and, most of the time, some context. (e.g., number of unique labels)

Semi-Supervised Learning

- Combines SL and UL
- E.g., a small subset of labeled data is used to label unlabeled data.
- E.g., Generative Adversarial Network mapping blonde to brunette.

Reinforcement Learning

- It learns by interacting with the environment.
- Trial, error, and delay
- Needs well-defined reward feedback.

What about color?

Input $x^{(i)}$

=30,000

17

Representing the dataset

A sample: (x, y) $x \in \mathbb{R}^m$, $y \in \{0, 1\}$ Input Ground Truth Label Set of Samples: $\{(x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),...,(x^{(n)},y^{(n)})\}$ Matrix representation of inputs: $X =$ $\chi^{(1)T}$ $\chi^{(2)T}$ $\ddot{\bullet}$ $\chi^{(n)T}$ $X \in \mathbb{R}^{n \times m}$ Python X.shape = (n, m) Matrix representation of labels: $Y =$ $y^{(1)}$ $\mathcal{Y}^{\left(2\right) }$ $\ddot{\bullet}$ $\mathcal{Y}^{(n)}$ $Y \in \mathbb{R}^{n \times 1}$ $Y. shape = (n, 1)$ Number of rows Number of columns

Today's Topics

ML Life Cycle Use Case / Application

Custering

Custering

Custering

Custering

Custering

Custering

Custering

• Cancer detection

• Clustering

- Object segmentation
- Control of pressure valve

Deployment

• Stress test • Key Performance Indicators (KPIs) • Model Monitoring • Data drift • Model Refresh

Machine Learning Category

• Supervised • Self-supervised • Semi-supervised • Reinforcement

Evaluation

• Bias/Variance Analysis • Cross-Validation • Performance Metric (Application) • Explainability • Fairness, Transparency, and Privacy

Data

• Data acquisition • Training, validation, test data split • Data Wrangling • Exploratory Data Analysis (EDA) • Data Scaling • Data cleaning • Feature extraction and selection

Machine Learning Technique

• Specific technique

- Linear Regression
- Multi-layer Perceptrons (MLP)
- KNNs
- Objective Functions (ML Training)
- Hyperparameter tuning

A model cannot make a better hypothesis than one provided by the sample distribution and within the limits of the learning category and technique.

> "All models are wrong, but some are useful." – Prof. George Box

Hypothesis Space

Theorem #1: Bayes Optimal Classifier

• Bayesian optimal classifier:

$$
h^{BO}(x) = \arg\max_{y \in C} f(x, y)
$$

- Theorem 1: The Bayes Optimal Classifier $h^{(BO)}$ achieves minimal zero/one error of any deterministic classifier.
	- Note: This assumes comparison against deterministic classifiers $(\hat{y}^{(i)} = h(x^{(i)}))$

$$
0-1 \text{ loss} = \text{Zero}/\text{One Error} = \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}(\hat{y}^{(i)} \neq y^{(i)})
$$

21

Loss and Cost Functions

- Loss $\mathcal{L}_{\bm{\theta}}\left(y^{(i)}\right)$, $\mathbf{\hat{y}}^{(i)}$) is the error between the ground truth (i.e., expected response) $y^{\left(i\right)}$ and the model prediction $\hat{y}^{\left(i\right)}$.
- Cost $J(\theta)$ is a measure of overall model error for parameters θ .

Regression Objective Function Candidates

• Sum of Squared Residuals (Very similar to MSE)

 $SSR = \sum_{i=1}^{n} (y^{(i)} - \hat{y}^{(i)})^2$

• Mean Absolute Error

 $\text{MAE} = \frac{1}{n} \sum_{i=1}^{n} |y^{(i)} - \hat{y}^{(i)}|$

• Huber Loss

W

Huber Loss =
$$
\sum_{i=1}^{n} L_{\delta}(y^{(i)} - \hat{y}^{(i)})
$$

here $L_{\delta}(r) = \begin{cases} \frac{1}{2}r^2 & \text{if } |r| \leq \delta \\ \delta(|r| - \frac{1}{2}\delta) & \text{otherwise} \end{cases}$

Combines the strengths of SSR and MAE (i.e., quadratic for small errors and linear for large errors)

4.5

 3.5

-Squared
-Absolute
-Log-Cosh
-Huber (δ =5)
-Huber (δ =1)

Gradient Descent Algorithm

 $X \coloneqq$ data features $y \coloneqq$ data targets $\theta = \theta_0$ Repeat: $\hat{y} = h_{\theta}(X)$ $cost = J_{\theta}(y, \hat{y})$ $d\theta=$ $\partial J_{\theta}\left(y,\hat{y}\right)$ $\partial \theta$ $\theta \coloneqq \theta - \alpha(d\theta)$ Until a fixed number of iterations or $d\theta$ very small.

Preferred Objective Functions Characteristics

- Adequate sensitivity to outliers
- Computationally efficient
- Differentiable everywhere
- Interpretable
- Convex
- Aligned with the use case

What is a computation graph?

$$
f(x, y) = 2(x + \frac{y}{2})
$$

We can use the graph to compute the derivative using the chain rule.

Chain Rule Refresher

• Example

Linear Regression

• For $m = 1$: $y^{(i)} = \theta_1 x^{(i)} + \theta_0$ θ s are the parameters to learn For $m = n_x$: $y^{(i)} = \theta_0 1 + \theta_1 x_1^{(i)} + \theta_2 x_2^{(i)} + \dots + \theta_m x_m^{(i)}$ $y^{(i)} = [1, x^{(i)T}] \theta$ Shape: $(1,1)$ Shape: $(1, m + 1)$ Shape: $(m + 1, 1)$

Exact Solution vs. Gradient Descent

$$
\theta = (X^T X)^{-1} X^T y
$$

- This gives an exact solution (modulo numerical inaccuracy for inverting the matrix)
- Gradient descent gives you progressively better solutions and eventually gets to an optimum

Qualitative Features

- Example: investigate differences in credit card balance between Asian, Caucasian, and African American.
	- We create an extra dummy variables
		- Dummy variables = Qualitative classes 1
		- Variable 1: Asian
		- Variable 2: Caucasian
		- Baseline: African American

 $y = \theta_0 + \theta_1 x_{1,1} + \theta_2 x_{1,2}$ 1s for Asian samples, 0s otherwise 1s for Caucasian samples, 0s otherwise

Matrix Design

- We have an input matrix X with shape (n, m)
- We want to fit a polynomial of degree d
- Polynomial feature extraction process
	- Columns for each feature polynomial power (e.g., x_1^3 , x_4^5)
	- Plus, columns for each feature interaction up to $d-1$ (e.g., x_1x_4 , $x_1^2x_4$)
- Example for data with n samples, $m = 2$ features, and polynomial degree $d = 3$.

$$
X_{new} = \begin{bmatrix} 1 & x_1 & x_2 & x_1^2 & x_1x_2 & x_2^2 & x_1^3 & x_1^2x_2 & x_1x_2^2 & x_2^3 \end{bmatrix}
$$

• Then, apply linear regression algorithm on X_{new}

29

Thinking outside the box

- Look at your data
- Learn about the domain
- Use equations that match your data and domain knowledge

Issues with Linear Regression for classification

- For balanced binary classification problems, linear regression is a good classifier.
- Since in the population $E(y | X = x) = Pr(Y = 1 | X = x)$, we might think that regression is perfect for this task.
- However, linear regression might produce probabilities less than zero or bigger than one.

Issues with Linear Regression for classification

• Now suppose we have a response variable with three possible values. A patient presents at the emergency room, and we must classify them according to their symptoms.

$$
y = \begin{cases} 1 & if & \text{stroke} \\ 2 & if & \text{drug overdose} \\ 3 & if & \text{epileptic seizure} \end{cases}
$$

- Any issues with this coding?
	- Suggests an ordering
	- Implies that the difference between *stroke* and *drug overdose* is the same as between *drug overdose* and *epileptic seizure*.

Logistic Regression

- Linear regression: $\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_m x_m = X\theta$
- Logistic regression:

Geometry of Logistic Regression

Loss Function Intuition

$$
\mathcal{L}(\hat{y}, y) = -(y \log(\hat{y}) + (1 - y) \log(1 - \hat{y}))
$$

• If $y = 1$: $\mathcal{L}(\hat{y}, 1) = -((1) \log(\hat{y}) + (1 - 1) \log(1 - \hat{y})) = -\log(\hat{y})$

As $\hat{y} \to 0$, $\mathcal{L}(\hat{y}, 1) \to \infty$

Loss Function Intuition

$$
\mathcal{L}(\hat{y}, y) = -(y \log(\hat{y}) + (1 - y) \log(1 - \hat{y}))
$$

• If $y = 0$: $\mathcal{L}(\hat{y}, 0) = -((0) \log(\hat{y}) + (1 - 0) \log(1 - \hat{y})) = -\log(1 - \hat{y})$

Training, Validation, and Test Sets

- **Training set:** samples drawn from $f(x, y)$ used to train/adjust the *parameters* in model $h(x)$.
- **Validation set:** samples drawn from $f(x, y)$ used to evaluate model performance and adjust the *hyperparameters* in model $h(x)$.
- **Test set:** samples drawn from $f(x, y)$ used to evaluate the final model with unseen data.

Practical Advice on Data Splits

- Most times, random sampling works fine unless...
	- Unbalanced classes Stratified split
	- Differences in the data (e.g., quality)
- Typical splits {Training, Validation, Testing}
	- $-$ {60, 20, 20}, {70, 15, 15}, {80, 10, 10}
	- Validation and testing set splits are about adequate data representation
- Avoid data leakage

E.g., time series data split chronologically

— E.g., instances of the same sample assign to same set.

https://ttpoll.com/p/817711 *Random Sampling*

Overfitting and Underfitting

Bias and Variance

So far

Regularization and Model Error

Image source: https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/

33

Popular Regularization/Penalty Terms

Decision Trees

Stay home or go to the movies

- Iterative top-down creation of hypothesis (Classifier)
- Hierarchy of decisions
	- $-$ We ask questions to split the dataset.
- Highly explainable

https://ttpoll.com/p/643115 How to handle decisions at non-pure leaf nodes?

Binary vs Categorical

Similar to linear regression: Add a new feature per category (i.e., new columns in X).

When to stop growing the tree?

- Node is pure
	- Leaf node contains only examples of the same class
- x_i feature values are the same for all examples
- Statistical significance test
	- E.g., Chi-Square: Are parent and child class distributions significantly different?

Choosing the *"best"* **attribute**

- **Key problem:** choosing which attribute to split a given set of examples
- Some possibilities are:
	- Random: Select any attribute at random
	- Least-Values: Choose the attribute with the smallest number of possible values
	- Most-Values: Choose the attribute with the largest number of possible values
	- Max-Gain: Choose the attribute that has the largest expected information gain
		- i.e., the attribute that results in the smallest expected size of the subtrees rooted at its children

Information Gain

If we have a *delta* between the parent node impurity and the child nodes cumulative impurity, we *gain information*.

 $V:$ Feature to split

- D_p : dataset of parent node
- D_i : dataset of child node j
- *I*: Impurity measurement
- N_p : Number of training examples for parent node
- N_i : Number of training examples for child node j

 $m:$ Number of child nodes

Impurity Metrics

- Entropy (I_H) :
	- Attempts to maximize mutual information.
	- How much knowledge about y we gain from knowing split D_i ?
- Gini (I_G) :
	- Minimizes the probability of misclassification
	- Produces very similar results to Entropy.
- Classification Error (I_F) :
	- Less sensitive to changes in the node class distribution
	- Useful when pruning the tree

Entropy (!!**) - Shannon**

Conditional Entropy

Diagonal Boundaries

Tree will become too large.

40 Slide credit: Dr. Raschka

KNOXVILL

Mutual Information

Mutual Information (I) is the amount of information that one random variable Y contains about another random variable X .

$$
I(X,Y) = H(X) + H(Y) - H(X,Y)
$$

 $H(X, Y) = H(Y) + H(X|Y) \Rightarrow$

 $I(X, Y) = H(X) - H(X|Y)$

$$
I_H(D, V) = I_H(D) - I_H(D|V) = I_H(D) - \sum_{v \in V} p(V = v) I_H(D|V = v) = 0.99 - 0.76 = 0.23
$$
\nThis is our information gain.

41 Slide credit: Dr. Raschka

Post-Pruning (After Training)

- Acquire more training data
- Grow full tree first, then remove nodes
- *Reduced-error pruning:* remove nodes via validation set evaluation
	- Requires a test set
	- Greedly remove node that most improves validation set accuracy

Pre-Pruning (Before we grow tree)

- Set a depth cut-off (maximum tree depth)
- Cost-complexity pruning, where we set a total number of nodes.
- Stop growing if split is not statistically significant — (e.g., χ^2 test)
- Set a minimum number of data points for each node
	- Addresses labeling errors
- Remove irrelevant attributes

Review

- (+) Easy to interpret and communicate
- (+) Can represent "complete" hypothesis space
- (-) Easy to overfit
- (-) Elaborate pruning required
- (-) Expensive to just fit a "diagonal line"
- (-) Output range is bounded in regression trees by input range.

