COSC 325: Introduction to Machine Learning

Dr. Hector Santos-Villalobos

Dr. Santos

Lecture E1: Exam 1 Review

Machine Learning vs Computer Programming

- Traditional Programming:
 - Algorithms are sequences of instructions that are carried out to transform an input into an output
 - Fundamentally, they are lists of instructions
- Machine Learning:
 - The list of instructions is *Learned* from data
 - Useful when the sequence of instructions is difficult to define
 - Examples
 - Facial recognition
 - Autonomous driving

Al vs Machine Learning

Artificial General Intelligence

Computers "mimic" how humans learn.

Artificial Intelligence

Computers mimic human behavior.

Machine Learning

Ability to learn without explicit hand-made rules.

Automated extraction of patterns/features from raw data using multi-layer neural networks.

A simple neural network input hidden output layer layer layer

Teaching computers how to learn a task directly from data.

Figure inspired on MIT 6.S191 course slide.

Generalization

- A key component of "learning" is the ability to generalize
 - Take information that has been learned previously and apply it to new but related scenarios
- For a technique to be considered a machine learning approach, it *must* be able to generalize
- Thus, we must evaluate its ability to generalize

Categories of Machine Learning

Slide credit: Dr. Raschka

Machine Learning Categories

Unsupervised

in unlabeled data

unique labels)

The algorithm discovers

• It needs inputs only and,

most of the time, some

context. (e.g., number of

patterns and relationships

Learning

Supervise Learning

- Trained on "Labeled dataset"
- Needs pairs of inputs and outputs (ground truth)

Semi-Supervised Learning

- Combines SL and UL
- E.g., a small subset of labeled data is used to label unlabeled data.
- E.g., Generative Adversarial Network mapping blonde to brunette.

Reinforcement Learning

- It learns by interacting with the environment.
- Trial, error, and delay
- Needs well-defined reward feedback.

Slide credit: Dr. Raschka

What about color?

Input $x^{(i)}$

=30,000

17

Representing the dataset

A sample: (x, y) $x \in \mathbb{R}^m$, $y \in \{0, 1\}$ Ground Truth Set of Samples: { $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(n)}, y^{(n)})$ } Input Label Matrix representation of inputs: $X = \begin{bmatrix} x^{(1)T} \\ x^{(2)T} \\ \vdots \\ x^{(n)T} \end{bmatrix}$ $X \in \mathbb{R}^{n \times m}$ Python X.shape = (n, m)Number of rowsNumber of rowsNumber of rowsMatrix representation of labels: $Y = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{bmatrix}$ $Y \in \mathbb{R}^{n \times 1}$ Scalar StructureScalar StructureYet Structure

Today's Topics

4

ML Life Cycle

Use Case / Application
• Cancer detection

Clustering

- Object segmentation
- Control of pressure valve

Deployment

Stress test
Key Performance Indicators (KPIs)
Model Monitoring
Data drift
Model Refresh

Machine Learning Category

Supervised
Self-supervised
Semi-supervised
Reinforcement

Evaluation

Bias/Variance Analysis
Cross-Validation
Performance Metric (Application)
Explainability
Fairness, Transparency, and Privacy

Data

Data acquisition
Training, validation, test data split
Data Wrangling
Exploratory Data Analysis (EDA)
Data Scaling
Data cleaning
Feature extraction and selection

Machine Learning Technique

- Specific technique
- Linear Regression
- Multi-layer Perceptrons (MLP)
- KNNs
- Objective Functions (ML Training)
- Hyperparameter tuning

A model cannot make a better hypothesis than one provided by the sample distribution and within the limits of the learning category and technique.

"All models are wrong, but some are useful." – Prof. George Box

Entire hypothesis space f(x)Hypothesis space for a particular learning category

Hypothesis space for a particular learning algorithm/technique

Particular hypothesis $h_{\theta}(x)$

Theorem #1: Bayes Optimal Classifier

Bayesian optimal classifier:

$$h^{BO}(x) = \arg \max_{y \in C} f(x, y)$$

- Theorem 1: The Bayes Optimal Classifier $h^{(BO)}$ achieves minimal zero/one error of any deterministic classifier.
 - Note: This assumes comparison against deterministic classifiers ($\hat{y}^{(i)} = h(x^{(i)})$)

$$0-1 \operatorname{loss} = \operatorname{Zero}/\operatorname{One} \operatorname{Error} = \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}(\hat{y}^{(i)} \neq y^{(i)})$$

21

Loss and Cost Functions

- Loss $\mathcal{L}_{\theta}\left(y^{(i)}, \hat{y}^{(i)}\right)$ is the error between the ground truth (i.e., expected response) $y^{(i)}$ and the model prediction $\hat{y}^{(i)}$.
- Cost $J(\theta)$ is a measure of overall model error for parameters θ .

We want both to be SMALL

Regression Objective Function Candidates

• Sum of Squared Residuals (Very similar to MSE)

 $SSR = \sum_{i=1}^{n} (y^{(i)} - \hat{y}^{(i)})^2$

Mean Absolute Error

MAE = $\frac{1}{n} \sum_{i=1}^{n} |y^{(i)} - \hat{y}^{(i)}|$

• Huber Loss

W

Huber Loss =
$$\sum_{i=1}^{n} L_{\delta}(y^{(i)} - \hat{y}^{(i)})$$

there $L_{\delta}(r) = \begin{cases} \frac{1}{2}r^2 & \text{if } |r| \leq \delta \\ \delta(|r| - \frac{1}{2}\delta) & \text{otherwise} \end{cases}$

Combines the strengths of SSR and MAE (i.e., quadratic for small errors and linear for large errors)

4.5

Squared Absolute Log-Cosh Huber (δ =5) Huber (δ =1)

Gradient Descent Algorithm

 $X \coloneqq$ data features $y \coloneqq$ data targets $\theta = \theta_0$ Repeat: $\hat{y} = h_{\theta}(X)$ $cost = J_{\theta}(y, \hat{y})$ $d\theta = \frac{\partial J_{\theta}(y,\hat{y})}{\partial \theta}$ $\theta \coloneqq \theta - \alpha(d\theta)$ Until a fixed number of iterations or dθ very small.

Preferred Objective Functions Characteristics

- Adequate sensitivity to outliers
- Computationally efficient
- Differentiable everywhere
- Interpretable
- Convex
- Aligned with the use case

What is a computation graph?

$$f(x,y) = 2(x + \frac{y}{2})$$

We can use the graph to compute the derivative using the chain rule.

Chain Rule Refresher

• Example

Linear Regression

• For m = 1: $y^{(i)} = \theta_1 x^{(i)} + \theta_0$ $y^{(i)} = \theta_0 1 + \theta_1 x_1^{(i)} + \theta_2 x_2^{(i)} + \dots + \theta_m x_m^{(i)}$ $y^{(i)} = [1, x^{(i)T}]\theta$ Shape: (1, 1)Shape: (1, m + 1)

Exact Solution vs. Gradient Descent

$$\theta = (X^T X)^{-1} X^T y$$

- This gives an exact solution (modulo numerical inaccuracy for inverting the matrix)
- Gradient descent gives you progressively better solutions and eventually gets to an optimum

Qualitative Features

- Example: investigate differences in credit card balance between Asian, Caucasian, and African American.
 - We create an extra dummy variables
 - Dummy variables = Qualitative classes 1
 - Variable 1: Asian
 - Variable 2: Caucasian
 - Baseline: African American

1s for Asian samples, 0s otherwise $y = \theta_0 + \theta_1 x_{1,1} + \theta_2 x_{1,2}$ 1s for Caucasian samples, 0s otherwise

Matrix Design

- We have an input matrix X with shape (n, m)
- \bullet We want to fit a polynomial of degree d
- Polynomial feature extraction process
 - Columns for each feature polynomial power (e.g., x_1^3 , x_4^5)
 - Plus, columns for each feature interaction up to d 1 (e.g., $x_1x_4, x_1^2x_4$)
- Example for data with n samples, m = 2 features, and polynomial degree d = 3.

$$X_{new} = \begin{bmatrix} 1 & x_1 & x_2 & x_1^2 & x_1x_2 & x_2^2 & x_1^3 & x_1^2x_2 & x_1x_2^2 & x_2^3 \end{bmatrix}$$

• Then, apply linear regression algorithm on X_{new}

Thinking outside the box

- Look at your data
- Learn about the domain
- Use equations that match your data and domain knowledge

Issues with Linear Regression for classification

- For balanced binary classification problems, linear regression is a good classifier.
- Since in the population E(y | X = x) = Pr(Y = 1 | X = x), we might think that regression is perfect for this task.
- However, linear regression might produce probabilities less than zero or bigger than one.

Issues with Linear Regression for classification

 Now suppose we have a response variable with three possible values. A patient presents at the emergency room, and we must classify them according to their symptoms.

$$y = \begin{cases} 1 & if & stroke \\ 2 & if & drug overdose \\ 3 & if & epileptic seizure \end{cases}$$

- Any issues with this coding?
 - Suggests an ordering
 - Implies that the difference between *stroke* and *drug overdose* is the same as between *drug overdose* and *epileptic seizure*.

Logistic Regression

- Linear regression: $\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_m x_m = X \theta$
- Logistic regression:

Geometry of Logistic Regression

Loss Function Intuition

$$\mathcal{L}(\hat{y}, y) = -(y \log(\hat{y}) + (1 - y) \log(1 - \hat{y}))$$

• If y = 1: $\mathcal{L}(\hat{y}, 1) = -((1)\log(\hat{y}) + (1-1)\log(1-\hat{y})) = -\log(\hat{y})$

As $\hat{y} \to 0, \mathcal{L}(\hat{y}, 1) \to \infty$

Loss Function Intuition

$$\mathcal{L}(\hat{y}, y) = -(y \log(\hat{y}) + (1 - y) \log(1 - \hat{y}))$$

• If y = 0: $\mathcal{L}(\hat{y}, 0) = -((0)\log(\hat{y}) + (1-0)\log(1-\hat{y})) = -\log(1-\hat{y})$

Training, Validation, and Test Sets

- Training set: samples drawn from f(x, y) used to train/adjust the parameters in model h(x).
- Validation set: samples drawn from f(x, y) used to evaluate model performance and adjust the *hyperparameters* in model h(x).
- Test set: samples drawn from f(x, y) used to evaluate the final model with unseen data.

Practical Advice on Data Splits

- Most times, random sampling works fine unless...
 - Unbalanced classes Stratified split
 - Differences in the data (e.g., quality)
- Typical splits {Training, Validation, Testing}
 - {60, 20, 20}, {70,15,15}, {80,10,10}
 - Validation and testing set splits are about adequate data representation
- Avoid data leakage
- E.g., time series data split chronologically
 - E.g., instances of the same sample assign to same set.

https://ttpoll.com/p/817711 Random Sampling

Overfitting and Underfitting

Bias and Variance

So far

Regularization and Model Error

Image source: https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/

3

Popular Regularization/Penalty Terms

Technique	Formula	Туре	Effect	Common use cases
Ridge (L2)	$\frac{\lambda}{2} \sum_{i=1}^{m} w_j^2 = w^T w$	Penalizes squared weights	Rewards smaller weights, smoother transitions.	Linear/Logistic Regression, Neural Networks
Lasso (L1)	$\lambda \sum_{j=1}^{m} w_j $	Penalizes absolute weights	Rewards sparsity (feature space reduction)	High-dimensional data
ElasticNet	$\frac{\lambda_1}{2} \ w\ _2^2 + \lambda_2 \ w\ _1$	Combines Ridge and Lasso	Balances sparsity (L1) and smoothness (L2)	High-dimensional data with correlated features
Early Stopping	N/A	Stops training after specified cost event.	Prevents overfitting by using an earlier checkpoint.	Neural Networks

Decision Trees

Stay home or go to the movies

- Iterative top-down creatio of hypothesis (Classifier)
- Hierarchy of decisions
 - We ask questions to split th dataset.
- Highly explainable

How to handle decisions at non-pure leaf nodes?

Binary vs Categorical

Similar to linear regression: Add a new feature per category (i.e., new columns in *X*).

When to stop growing the tree?

- Node is pure
 - Leaf node contains only examples of the same class
- x_j feature values are the same for all examples
- Statistical significance test
 - E.g., Chi-Square: Are parent and child class distributions significantly different?

Choosing the "best" attribute

- Key problem: choosing which attribute to split a given set of examples
- Some possibilities are:
 - Random: Select any attribute at random
 - Least-Values: Choose the attribute with the smallest number of possible values
 - Most-Values: Choose the attribute with the largest number of possible values
 - Max-Gain: Choose the attribute that has the largest expected information gain
 - i.e., the attribute that results in the smallest expected size of the subtrees rooted at its children

Information Gain

If we have a <u>delta</u> between the parent node impurity and the child nodes cumulative impurity, we <u>gain</u> <u>information</u>.

V: Feature to split

- D_p : dataset of parent node
- D_j : dataset of child node j
- *I*: Impurity measurement
- N_p : Number of training examples for parent node
- N_j : Number of training examples for child node j

m: Number of child nodes

Impurity Metrics

- Entropy (I_H) :
 - Attempts to maximize mutual information.
 - How much knowledge about y we gain from knowing split D_j ?
- Gini (*I_G*):
 - Minimizes the probability of misclassification
 - Produces very similar results to Entropy.
- Classification Error (I_E) :
 - Less sensitive to changes in the node class distribution
 - Useful when pruning the tree

Entropy (*I_H*) - Shannon

Conditional Entropy

Diagonal Boundaries

Tree will become too large.

40 Slide credit: Dr. Raschka

Mutual Information

Mutual Information (*I*) is the amount of information that one random variable Y contains about another random variable X.

$$I(X,Y) = H(X) + H(Y) - H(X,Y)$$

 $H(X,Y) = H(Y) + H(X|Y) \Rightarrow$

I(X,Y) = H(X) - H(X|Y)

$$I_H(D,V) = I_H(D) - I_H(D|V) = I_H(D) - \sum_{v \in V} p(V = v)I_H(D|V = v) = 0.99 - 0.76 = 0.23$$

This is our information gain.

KNOXVILL

41 Slide credit: Dr. Raschka

Post-Pruning (After Training)

- Acquire more training data
- Grow full tree first, then remove nodes
- Reduced-error pruning: remove nodes via validation set evaluation
 - Requires a test set
 - Greedly remove node that most improves validation set accuracy

Pre-Pruning (Before we grow tree)

- Set a depth cut-off (maximum tree depth)
- Cost-complexity pruning, where we set a total number of nodes.
- Stop growing if split is not statistically significant (e.g., χ^2 test)
- Set a minimum number of data points for each node
 - Addresses labeling errors
- Remove irrelevant attributes

Review

- (+) Easy to interpret and communicate
- (+) Can represent "complete" hypothesis space
- (-) Easy to overfit
- (-) Elaborate pruning required
- (-) Expensive to just fit a "diagonal line"
- (-) Output range is bounded in regression trees by input range.

