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Class Announcements
Homework
Done with all the homework!!!!!!!

Course Project:
• Amy Huang’s tip: 

• Hodges Library Studio, $3-$6, 2 BD 
• Ucopy, $15, 2 BD

• Course Project Presentation Poster Logistics
• Please arrive early!

Quizzes:
No quiz this week.

Exams:
Exam #2 this Thursday, 11/21—online format.

Lectures:
• Panel on Ethical AI 11/26. You will get 

attendance points by posting a question in the 
Discord #panel-on-ethical-ai channel 
(https://discord.com/channels/126314454408
2596050/1306342338926346260)

3

TN Voice Open!



Course Project Feedback
• There is mention of issues but no 

mention of the mechanisms to 
address issues
— E.g., missing values, outliers, etc.
• Data preprocessing steps missing
• Report depends on Jupyter 

notebook.
— Report needs to be self-contained.
• EDA that provides insights about 

your problem and solution
— E.g., data shape and normalization 

technique

• Backup claims with actual numbers 
or visualizations
• No clear definition of what the model 

should do
— E.g., Stocks, down/upward trend 

prediction vs stock price regressor
• No distribution of work.
• No mention of ML technique in intro.
• Plots without legend or axis titles
• Multiple ML techniques without 

proper comparison. (k-fold, CIs)
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Review

• ANNs
— Hebb’s Law: “Neurons that fire together 

wire together.”
• Connectionist Machines

— Differentiable networks
• We can update parameters with Gradient 

Descent

— Layer weight matrix dimensions 
𝑚 !"# , 𝑚 !

— Number of parameters in a layer is the 
number of weights and biases or 𝑚 !"# ×
𝑚 ! +𝑚 !
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Today’s Topics
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Artificial Neural Networks Deep Learning*
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Pop Quiz

Go to Discord panel-on-ethical-ai channel and enter a question about AI.
Examples:
• Career in AI/ML
• Ethics in AI
• Concerns about Artificial General Intelligence
• Curiosity about a particular application

https://discord.com/channels/1263144544082596050/1306342338926346260 

https://discord.com/channels/1263144544082596050/1306342338926346260


Backpropagation 
Algorithm
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*Jürgen Schmidhuber, “Who Invented Backpropagation?” (2014)
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Backpropagation Algorithm

Introduced in the1960s

1960s

Modern technique invented in the 
1970’s by Seppo Linnainmaa*

1970’s

Popularized in 1989 by Rumelhart, 
Hinton, and Williams in the paper 
“Learning representations by back-
propagating errors”.

1989
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Feed-Forward Network

Sampl
e # x1 x2 x3 y s

1 1.5 3 -1 0.6 0
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Backpropagation Algorithm (High Level)

𝐸𝑟𝑟𝑜𝑟! = 𝐶𝑜𝑠𝑡(𝑠!, 𝑦!	)

𝐸𝑟𝑟𝑜𝑟# = 0 − 0.6 $ = 0.36

Sampl
e # x1 x2 x3 y s

1 1.5 3 -1 0.6 0
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… … … … … …

Data Samples
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Backpropagation Algorithm (High Level)

𝐸𝑟𝑟𝑜𝑟! = 𝐶(𝑠! − 𝑦!	)

𝐸𝑟𝑟𝑜𝑟$ = 1 − 0.3 $ = 0.49

Sampl
e # x1 x2 x3 y s

1 1.5 3 -1 0.6 0

2 2 1.5 1 0.3 1

N -1 3 0 0.8 1

… … … … … …

Data Samples

2

1.5

1

0.3
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Backpropagation Algorithm (High Level)

𝐸𝑟𝑟𝑜𝑟! = 𝐶(𝑠! − 𝑦!	)

𝐸𝑟𝑟𝑜𝑟% = 1 − 0.8 $ = 0.04

Sampl
e # x1 x2 x3 y s

1 1.5 3 -1 0.6 0

2 2 1.5 1 0.3 1

N -1 3 0 0.8 1

… … … … … …

Data Samples
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3
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Backpropagation Algorithm

𝑀𝑒𝑎𝑛𝐸𝑟𝑟𝑜𝑟 = 0.29

Sampl
e # x1 x2 x3 y s

1 1.5 3 -1 0.6 0

2 2 1.5 1 0.3 1

N -1 3 0 0.8 1

… … … … … …

Data Samples
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Backpropagation Algorithm

Sampl
e # x1 x2 x3 y s

1 1.5 3 -1 0.6 0

2 2 1.5 1 0.3 1

N -1 3 0 0.8 1

… … … … … …

Data Samples

𝑀𝑒𝑎𝑛𝐸𝑟𝑟𝑜𝑟 = 0.29
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Backpropagation Algorithm

Sampl
e # x1 x2 x3 y s

1 1.5 3 -1 0.6 0

2 2 1.5 1 0.3 1

N -1 3 0 0.8 1

… … … … … …

Data Samples

Path already computed using 
the Chain Rule!

𝑀𝑒𝑎𝑛𝐸𝑟𝑟𝑜𝑟 = 0.29



Backpropagation Algorithm
• Layer-wise computation and 

modularity
— Layer-size-dependent memory
— Parallelizability by efficient GPU-based 

asynchronous matrix multiplication
— Memory scales linearly with the size of the 

network
• Mini-batch processing
• Simplicity of Gradient Computation
— Straightforward
— Iterative weight updates
— Allows for techniques to mitigate vanishing 

and exploding gradients 
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Activation 
Functions
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Activation Functions
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Activation 
Function

Real inputs and 
outputs.
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Desirable properties

• Add non-linearity to the network
• Low computational cost
• Differentiable

• Otherwise, gradient descent 
(backpropagation) will not work



Linear Activation Functions

• For a linear activation function: 
— 𝑔 ! 𝑍 ! = 𝑍 !

— Also known as an identity activation 
function

— Independent of the depth of the 
network, the model can be collapsed 
into a single-layer model.

— It still has its uses…
• E.g., output layer for linear regression
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Traditional Activation Functions

• Sigmoid function
— Mostly used for binary output layer
— Small derivatives for large and small z

• Hyperbolic tangent function (tanh)
— In general, works better than sigmoid
— Good for hidden units
— Small derivatives for large and small z
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𝑔 𝑧 =
1
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Derivative Sigmoid

• Recall: 𝑔! 𝑧 = 𝜎! 𝑧 = 𝜎(𝑧)(1 − 𝜎 𝑧 )
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𝑔 𝑧 =
1

1 + 𝑒&'

𝑔 3 ≈ 1 → 𝑔$ 10 = 1 1 − 1 = 0

𝑔 −3 ≈ 0 → 𝑔$ −10 = 0 1 − 0 = 0

𝑔 2 ≈ 0.88 → 𝑔$ 2 = 0.88 1 − 0.88 = 0.1

𝑔 0.5 ≈ 0.62 →𝑔$ 2 = 0.62 1 − 0.62 = 0.23

Max speed ¼ @ 
z=0



Derivative of Tanh

• 𝐼𝑓	𝑔 𝑧 = tanh 𝑧 , 𝑡ℎ𝑒𝑛
• 𝑔! 𝑧 = 1 − tanh 𝑧 "

• 𝑎 = 𝑔 𝑧 , 𝑡ℎ𝑒𝑛	𝑔! 𝑧 = 1 − 𝑎"
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𝑔 𝑧 =
𝑒' − 𝑒&'

𝑒' + 𝑒&'

𝑔 3 ≈ 1 → 𝑔$ 10 = 1 − 1# = 0

𝑔 −3 ≈ −1 → 𝑔$ −10 = 1 − −1 # = 0

𝑔 2 ≈ 0.96 → 𝑔$ 2 = 1 − 0.96# = 0.07

𝑔 0.5 ≈ 0.46 → 𝑔$ 2 = 1 − 0.46# = 0.78
Max speed 1 @ z=0



Rectified Linear Unit  (ReLU) Function

24

• The “go-to” activation function

• Derivative is very different from zero
• Derivative at zero is not defined
— You can set 𝑔$ 0 = 0	𝑜𝑟	1
— It has zero impact on performance
— Likelihood of hitting 𝑧 = 0 is unlikely.

• Mitigates vanishing gradients
— Still can cause exploding gradients

• Dying ReLU problem

𝑔 𝑧 = max(0, 𝑧)

𝑔′ 𝑧 = D1, 𝑧 ≥ 0
0, 𝑧 < 0



Leaky ReLU
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• Works better than standard ReLU

• Fixes Dying ReLU problem
• Derivative is very different from zero

• Alpha usually 0.001. It can also be  
hyperparameter

𝑔 𝑧 = D
𝑧

𝛽𝑧	𝑓𝑜𝑟	𝑧 < 0 𝑔′ 𝑧 = D 1
𝛽	𝑓𝑜𝑟	𝑧 < 0
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ReLU and Leaky ReLU Derivatives

𝑔 𝑧 = max(0, 𝑧)

𝑔′ 𝑧 = D 1
0	𝑓𝑜𝑟	𝑧 < 0

𝑔 𝑧 = D
𝑧

𝛽𝑧	𝑓𝑜𝑟	𝑧 < 0

𝑔′ 𝑧 = D 1
𝛽	𝑓𝑜𝑟	𝑧 < 0



Credit: Ashis Kumer Biswas, UC Denver27
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Limitation of Fully Connected NNs

32

32

x3 3,072 *𝑛 "  connections

We want to work 
with higher-
resolution images.

720

480

x3 (1M+) *𝑛 "  
connections

CIFAR 10



Convolutional 
Neural Networks
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Automated feature 
extraction

Hierarchical feature 
learning

Reduction of parameters 
needed when compared 
to Fully Connected (FC) 
networks

Transfer learning
Robustness to image 
variations

Convolutional Neural Networks

30

LeNet Net 1998, 60k Parameters 
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Solution to MINST Dataset and Alpha Go

Layer-1

Layer-3
Layer-5 Input

http://yann.lecun.com/exdb/lenet/index.html https://deepmind.google/technologies/alphago/

“In October 2015, AlphaGo played its first game against the reigning three-
time European Champion, Fan Hui. AlphaGo won the first ever match 
between an AI system and Go professional, scoring 5-0.”



32

Evolution of Deep Learning Networks

Source: imagenet_ilsvrc2017_v1.0.pdf
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Types of Convolutional Layers
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Convolution Operation
In formal math, this is known 
as cross-correlation.
• Convolution requires a 

left-right and up-down flip 
of the filter before 
multiplication.

1 2 3

4 5 6

7 8 9

Original Filter

9 8 7

6 5 4

3 2 1

Before Matrix Mult.

Animation by Tim Terati: https://medium.com/@timothy_terati/image-convolution-filtering-a54dce7c786b

3×3 5×5 3×3→
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Convolution Operation
In formal math, this is known 
as cross-correlation.
• Convolution requires a 

left-right and up-down flip 
of the filter before 
multiplication.

1 2 3

4 5 6

7 8 9

Original Filter

9 8 7

6 5 4

3 2 1

Before Matrix Mult.

Animation by Tim Terati: https://medium.com/@timothy_terati/image-convolution-filtering-a54dce7c786b

This operation has zero 
impact on DL model design 

or performance.

We still call this operation 
convolution.

So, we can save computing 
on these steps.

3×3 5×5 3×3→
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Convolution Operation
In formal math, this is known 
as cross-correlation.
• Convolution requires a 

left-right and up-down flip 
of the filter before 
multiplication.

1 2 3

4 5 6

7 8 9

Original Filter

9 8 7

6 5 4

3 2 1

Before Matrix Mult.

Animation by Tim Terati: https://medium.com/@timothy_terati/image-convolution-filtering-a54dce7c786b

𝒇×𝒇 𝒏𝒉×𝒏𝒘 (𝒏𝒉−𝒇 + 𝟏)×(𝒏𝒘 − 𝒇 + 𝟏)→

This operation has zero 
impact on DL model design 

or performance.

We still call this operation 
convolution.

So, we can save computing 
on these steps.
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Vertical Edge Detection

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

1 0 -1

1 0 -1

1 0 -1

∗ =
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Vertical Edge Detection

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

1 0 -1

1 0 -1

1 0 -1

∗ =

1 0 -1

1 0 -1

1 0 -1

0

1 ∗ 5 + 0 ∗ 5 + −1 ∗ 5 + 1 ∗ 5 + 0 ∗ 5 + −1 ∗ 5 + 1 ∗ 5 + 0 ∗ 5 + −1 ∗ 5
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Vertical Edge Detection

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

1 0 -1

1 0 -1

1 0 -1

∗

0 15

=

1 0 -1

1 0 -1

1 0 -1
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Vertical Edge Detection

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

1 0 -1

1 0 -1

1 0 -1

∗

0 15 15

=

1 0 -1

1 0 -1

1 0 -1
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Vertical Edge Detection

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

1 0 -1

1 0 -1

1 0 -1

∗

0 15 15 0

=

1 0 -1

1 0 -1

1 0 -1
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Vertical Edge Detection

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

1 0 -1

1 0 -1

1 0 -1

∗

0 15 15 0

0
=

1 0 -1

1 0 -1

1 0 -1
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Vertical Edge Detection

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

1 0 -1

1 0 -1

1 0 -1

∗

0 15 15 0

0 15 15 0

0 15 15 0

0 15 15 0

=
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Vertical Edge Detection

0 0 0 5 5 5

0 0 0 5 5 5

0 0 0 5 5 5

0 0 0 5 5 5

0 0 0 5 5 5

0 0 0 5 5 5

1 0 -1

1 0 -1

1 0 -1

∗

0 -15 -15 0

0 -15 -15 0

0 -15 -15 0

0 -15 -15 0

=

It also tells us the 
direction of the 

transition.
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Horizontal Edge Detection

5 5 5 5 5 5

5 5 5 5 5 5

5 5 5 5 5 5

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 -1

1 0 -1

1 0 -1

∗

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

=

If we use the same 
filter
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Horizontal Edge Detection

5 5 5 5 5 5

5 5 5 5 5 5

5 5 5 5 5 5

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 1 1

0 0 0

-1 -1 -1

∗

0 0 0 0

15 15 15 15

15 15 15 15

0 0 0 0

=
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Diagonal Edge Detection

5 5 5 5 5 5

5 5 5 5 5 0

5 5 5 5 0 0

5 5 5 0 0 0

5 5 0 0 0 0

5 0 0 0 0 0

1 1 0

1 0 -1

0 -1 -1

∗

0 0 5 15

0 5 15 15

5 15 15 5

15 15 5 0

=
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How does convolution help us?

1 0 -1

1 0 -1

1 0 -1

1 0 -1

2 0 -2

1 0 -1

Sobel filter

3 0 -3

10 0 -10

3 0 -3

Scharr filter

1/16 1/8 1/16

1/8 1/4 1/8

1/16 1/8 1/16

Gaussian filter

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

𝑤! 𝑤" 𝑤#
𝑤$ 𝑤% 𝑤&
𝑤' 𝑤( 𝑤)

∗ =

How can we learn 
these weights?

Image Output

Filter



Convolutional Neural Networks

Learn multiple filters

49 Slide: M. Ranzato 



Feature Map

Image: Rob Fergus50
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Why CNNs?

59



Number of parameters

30×30×3

𝑓. 𝑠ℎ𝑎𝑝𝑒
= 5,5,10

26×26×10 6,760 Responses

𝑥"
⋮

𝑥#788

𝑎 "

𝑎"
⋮

𝑎9798

𝑊 " . 𝑠ℎ𝑎𝑝𝑒 = (6760, 2700)

260 Parameters

~18M Parameters

Fully Connected 
Approach



Use Local Regions (Sparsity of Connections)
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000555

000555

000555

000555

000555

000555

-101

-101

-101

∗

015150

015150

015150

015150

=

The output for this window is only 
influenced by the pixels 

overlapping with the filter.



Reuse The Same Kernel Everywhere

• Interesting features can happen 
anywhere in the image

• Share the same parameters across 
different locations

• Convolutions with learned kernels (i.e., 
filters)
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Benefits of Sparsity and 
Reuse

• Uses less memory

• Needs less data

• Less prone to overfitting

• Built-in translation invariance
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Convolutional Neural Networks
• Images
• 3D Objects
• DNA
• Tabular data
• Spectrograms
• Etc.
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Recap

• Locally connected (sparsity):
— Each neuron is only connected to a few neurons in the previous layer. 

These are usually neurons that we expect will exhibit certain features
• E.g., a neighborhood of pixels around a pixel in an image

• Shared weights:
— Since we expect similar features to be present anywhere in the input, we would 

like these features to be detected everywhere. Therefore, we use neurons (i.e., 
filters) with shared weights.

• The neurons act as a feature detector:
— Searching for certain local patterns across the input 

65

filter == kernel == neuron weights


