
COSC 325: Introduction to Machine
Learning

Dr. Hector Santos-Villalobos

Lecture 21:
Artificial Neural
Networks and
Deep Learning

Class Announcements
Homework
Done with all the homework!!!!!!!

Course Project:
• Amy Huang’s tip:

• Hodges Library Studio, $3-$6, 2 BD
• Ucopy, $15, 2 BD

• Course Project Presentation Poster Logistics
• Please arrive early!

Quizzes:
No quiz this week.

Exams:
Exam #2 this Thursday, 11/21—online format.

Lectures:
• Panel on Ethical AI 11/26. You will get

attendance points by posting a question in the
Discord #panel-on-ethical-ai channel
(https://discord.com/channels/126314454408
2596050/1306342338926346260)

3

TN Voice Open!

Course Project Feedback
• There is mention of issues but no

mention of the mechanisms to
address issues
— E.g., missing values, outliers, etc.
• Data preprocessing steps missing
• Report depends on Jupyter

notebook.
— Report needs to be self-contained.
• EDA that provides insights about

your problem and solution
— E.g., data shape and normalization

technique

• Backup claims with actual numbers
or visualizations
• No clear definition of what the model

should do
— E.g., Stocks, down/upward trend

prediction vs stock price regressor
• No distribution of work.
• No mention of ML technique in intro.
• Plots without legend or axis titles
• Multiple ML techniques without

proper comparison. (k-fold, CIs)

4

Review

• ANNs
— Hebb’s Law: “Neurons that fire together

wire together.”
• Connectionist Machines

— Differentiable networks
• We can update parameters with Gradient

Descent

— Layer weight matrix dimensions
𝑚 !"# , 𝑚 !

— Number of parameters in a layer is the
number of weights and biases or 𝑚 !"# ×
𝑚 ! +𝑚 !

5

! =#$!%! + '

!!
!"
!#
⋮

#!
#"
##
#$

!$

$ ∈ 	ℝ((!)

Sigmoid(= #% #& ≔ #& + ∆#& , 	Δ#& = −0 '(
')!

Learning with
Gradient Descent

1ℒ
13 = $ − 4 Assumes

LogLoss

+ℒ
+%"

= (- − /)$"
+ℒ
+%# = (- − /)$# +ℒ

+' = (- − /)

Today’s Topics

6

Artificial Neural Networks Deep Learning*

7

Pop Quiz

Go to Discord panel-on-ethical-ai channel and enter a question about AI.
Examples:
• Career in AI/ML
• Ethics in AI
• Concerns about Artificial General Intelligence
• Curiosity about a particular application

https://discord.com/channels/1263144544082596050/1306342338926346260

https://discord.com/channels/1263144544082596050/1306342338926346260

Backpropagation
Algorithm

8

*Jürgen Schmidhuber, “Who Invented Backpropagation?” (2014)
9

Backpropagation Algorithm

Introduced in the1960s

1960s

Modern technique invented in the
1970’s by Seppo Linnainmaa*

1970’s

Popularized in 1989 by Rumelhart,
Hinton, and Williams in the paper
“Learning representations by back-
propagating errors”.

1989

[1]

[1]

[2]

[2]

10

Feed-Forward Network

Sampl
e # x1 x2 x3 y s

1 1.5 3 -1 0.6 0

2 2 1.5 1 0.3 1

N -1 3 0 0.8 1

… … … … … …

Data Samples

1.5

3

-1

0.6

[1]

[1]

[2]

[2]

11

Backpropagation Algorithm (High Level)

𝐸𝑟𝑟𝑜𝑟! = 𝐶𝑜𝑠𝑡(𝑠!, 𝑦!)

𝐸𝑟𝑟𝑜𝑟# = 0 − 0.6 $ = 0.36

Sampl
e # x1 x2 x3 y s

1 1.5 3 -1 0.6 0

2 2 1.5 1 0.3 1

N -1 3 0 0.8 1

… … … … … …

Data Samples

1.5

3

-1

0.6

[1]

[1]

[2]

[2]

12

Backpropagation Algorithm (High Level)

𝐸𝑟𝑟𝑜𝑟! = 𝐶(𝑠! − 𝑦!)

𝐸𝑟𝑟𝑜𝑟$ = 1 − 0.3 $ = 0.49

Sampl
e # x1 x2 x3 y s

1 1.5 3 -1 0.6 0

2 2 1.5 1 0.3 1

N -1 3 0 0.8 1

… … … … … …

Data Samples

2

1.5

1

0.3

[1]

[1]

[2]

[2]

13

Backpropagation Algorithm (High Level)

𝐸𝑟𝑟𝑜𝑟! = 𝐶(𝑠! − 𝑦!)

𝐸𝑟𝑟𝑜𝑟% = 1 − 0.8 $ = 0.04

Sampl
e # x1 x2 x3 y s

1 1.5 3 -1 0.6 0

2 2 1.5 1 0.3 1

N -1 3 0 0.8 1

… … … … … …

Data Samples

-1

3

0

0.8

[1]

[1]

[2]

[2]

14

Backpropagation Algorithm

𝑀𝑒𝑎𝑛𝐸𝑟𝑟𝑜𝑟 = 0.29

Sampl
e # x1 x2 x3 y s

1 1.5 3 -1 0.6 0

2 2 1.5 1 0.3 1

N -1 3 0 0.8 1

… … … … … …

Data Samples

[1]

[1]

[2]

[2]

15

Backpropagation Algorithm

Sampl
e # x1 x2 x3 y s

1 1.5 3 -1 0.6 0

2 2 1.5 1 0.3 1

N -1 3 0 0.8 1

… … … … … …

Data Samples

𝑀𝑒𝑎𝑛𝐸𝑟𝑟𝑜𝑟 = 0.29

[1]

[1]

[2]

[2]

16

Backpropagation Algorithm

Sampl
e # x1 x2 x3 y s

1 1.5 3 -1 0.6 0

2 2 1.5 1 0.3 1

N -1 3 0 0.8 1

… … … … … …

Data Samples

Path already computed using
the Chain Rule!

𝑀𝑒𝑎𝑛𝐸𝑟𝑟𝑜𝑟 = 0.29

Backpropagation Algorithm
• Layer-wise computation and

modularity
— Layer-size-dependent memory
— Parallelizability by efficient GPU-based

asynchronous matrix multiplication
— Memory scales linearly with the size of the

network
• Mini-batch processing
• Simplicity of Gradient Computation
— Straightforward
— Iterative weight updates
— Allows for techniques to mitigate vanishing

and exploding gradients

17

Activation
Functions

18

Activation Functions

!"!#! + %

!!
!"
!#
⋮

#!
#"
##
#$

!$

$%%&'()* ∈ 	ℝ"(1, & ')

Activation
Function

Real inputs and
outputs.

) = #+

!(∈ 	ℝ #(∈ 	ℝ

Desirable properties

• Add non-linearity to the network
• Low computational cost
• Differentiable

• Otherwise, gradient descent
(backpropagation) will not work

Linear Activation Functions

• For a linear activation function:
— 𝑔 ! 𝑍 ! = 𝑍 !

— Also known as an identity activation
function

— Independent of the depth of the
network, the model can be collapsed
into a single-layer model.

— It still has its uses…
• E.g., output layer for linear regression

20

𝑎 " = 𝑧 " = 𝑊 " 𝑋 + 𝑏 "

𝑎 # = 𝑧 # = 𝑊 # 𝑎 " + 𝑏 #

𝑎 # = 𝑧 # = 𝑊 #𝑊 " 𝑋 + 𝑏 " + 𝑏 #

𝑎 # = 𝑧 # = 𝑊$𝑋 + 𝑏$

𝑎 %&" = 𝑧 %&" = 𝑊$𝑋 + 𝑏$

⋮

Traditional Activation Functions

• Sigmoid function
— Mostly used for binary output layer
— Small derivatives for large and small z

• Hyperbolic tangent function (tanh)
— In general, works better than sigmoid
— Good for hidden units
— Small derivatives for large and small z

21

𝑔 𝑧 =
1

1 + 𝑒&'

𝑔 𝑧 =
𝑒' − 𝑒&'

𝑒' + 𝑒&'

Derivative Sigmoid

• Recall: 𝑔! 𝑧 = 𝜎! 𝑧 = 𝜎(𝑧)(1 − 𝜎 𝑧)

22

𝑔 𝑧 =
1

1 + 𝑒&'

𝑔 3 ≈ 1 → 𝑔$ 10 = 1 1 − 1 = 0

𝑔 −3 ≈ 0 → 𝑔$ −10 = 0 1 − 0 = 0

𝑔 2 ≈ 0.88 → 𝑔$ 2 = 0.88 1 − 0.88 = 0.1

𝑔 0.5 ≈ 0.62 →𝑔$ 2 = 0.62 1 − 0.62 = 0.23

Max speed ¼ @
z=0

Derivative of Tanh

• 𝐼𝑓	𝑔 𝑧 = tanh 𝑧 , 𝑡ℎ𝑒𝑛
• 𝑔! 𝑧 = 1 − tanh 𝑧 "

• 𝑎 = 𝑔 𝑧 , 𝑡ℎ𝑒𝑛	𝑔! 𝑧 = 1 − 𝑎"

23

𝑔 𝑧 =
𝑒' − 𝑒&'

𝑒' + 𝑒&'

𝑔 3 ≈ 1 → 𝑔$ 10 = 1 − 1# = 0

𝑔 −3 ≈ −1 → 𝑔$ −10 = 1 − −1 # = 0

𝑔 2 ≈ 0.96 → 𝑔$ 2 = 1 − 0.96# = 0.07

𝑔 0.5 ≈ 0.46 → 𝑔$ 2 = 1 − 0.46# = 0.78
Max speed 1 @ z=0

Rectified Linear Unit (ReLU) Function

24

• The “go-to” activation function

• Derivative is very different from zero
• Derivative at zero is not defined
— You can set 𝑔$ 0 = 0	𝑜𝑟	1
— It has zero impact on performance
— Likelihood of hitting 𝑧 = 0 is unlikely.

• Mitigates vanishing gradients
— Still can cause exploding gradients

• Dying ReLU problem

𝑔 𝑧 = max(0, 𝑧)

𝑔′ 𝑧 = D1, 𝑧 ≥ 0
0, 𝑧 < 0

Leaky ReLU

25

• Works better than standard ReLU

• Fixes Dying ReLU problem
• Derivative is very different from zero

• Alpha usually 0.001. It can also be
hyperparameter

𝑔 𝑧 = D
𝑧

𝛽𝑧	𝑓𝑜𝑟	𝑧 < 0 𝑔′ 𝑧 = D 1
𝛽	𝑓𝑜𝑟	𝑧 < 0

26

ReLU and Leaky ReLU Derivatives

𝑔 𝑧 = max(0, 𝑧)

𝑔′ 𝑧 = D 1
0	𝑓𝑜𝑟	𝑧 < 0

𝑔 𝑧 = D
𝑧

𝛽𝑧	𝑓𝑜𝑟	𝑧 < 0

𝑔′ 𝑧 = D 1
𝛽	𝑓𝑜𝑟	𝑧 < 0

Credit: Ashis Kumer Biswas, UC Denver27

28

Limitation of Fully Connected NNs

32

32

x3 3,072 *𝑛 " connections

We want to work
with higher-
resolution images.

720

480

x3 (1M+) *𝑛 "
connections

CIFAR 10

Convolutional
Neural Networks

29

Automated feature
extraction

Hierarchical feature
learning

Reduction of parameters
needed when compared
to Fully Connected (FC)
networks

Transfer learning
Robustness to image
variations

Convolutional Neural Networks

30

LeNet Net 1998, 60k Parameters

31

Solution to MINST Dataset and Alpha Go

Layer-1

Layer-3
Layer-5 Input

http://yann.lecun.com/exdb/lenet/index.html https://deepmind.google/technologies/alphago/

“In October 2015, AlphaGo played its first game against the reigning three-
time European Champion, Fan Hui. AlphaGo won the first ever match
between an AI system and Go professional, scoring 5-0.”

32

Evolution of Deep Learning Networks

Source: imagenet_ilsvrc2017_v1.0.pdf

33

Types of Convolutional Layers

34

Convolution Operation
In formal math, this is known
as cross-correlation.
• Convolution requires a

left-right and up-down flip
of the filter before
multiplication.

1 2 3

4 5 6

7 8 9

Original Filter

9 8 7

6 5 4

3 2 1

Before Matrix Mult.

Animation by Tim Terati: https://medium.com/@timothy_terati/image-convolution-filtering-a54dce7c786b

3×3 5×5 3×3→

35

Convolution Operation
In formal math, this is known
as cross-correlation.
• Convolution requires a

left-right and up-down flip
of the filter before
multiplication.

1 2 3

4 5 6

7 8 9

Original Filter

9 8 7

6 5 4

3 2 1

Before Matrix Mult.

Animation by Tim Terati: https://medium.com/@timothy_terati/image-convolution-filtering-a54dce7c786b

This operation has zero
impact on DL model design

or performance.

We still call this operation
convolution.

So, we can save computing
on these steps.

3×3 5×5 3×3→

36

Convolution Operation
In formal math, this is known
as cross-correlation.
• Convolution requires a

left-right and up-down flip
of the filter before
multiplication.

1 2 3

4 5 6

7 8 9

Original Filter

9 8 7

6 5 4

3 2 1

Before Matrix Mult.

Animation by Tim Terati: https://medium.com/@timothy_terati/image-convolution-filtering-a54dce7c786b

𝒇×𝒇 𝒏𝒉×𝒏𝒘 (𝒏𝒉−𝒇 + 𝟏)×(𝒏𝒘 − 𝒇 + 𝟏)→

This operation has zero
impact on DL model design

or performance.

We still call this operation
convolution.

So, we can save computing
on these steps.

37

Vertical Edge Detection

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

1 0 -1

1 0 -1

1 0 -1

∗ =

38

Vertical Edge Detection

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

1 0 -1

1 0 -1

1 0 -1

∗ =

1 0 -1

1 0 -1

1 0 -1

0

1 ∗ 5 + 0 ∗ 5 + −1 ∗ 5 + 1 ∗ 5 + 0 ∗ 5 + −1 ∗ 5 + 1 ∗ 5 + 0 ∗ 5 + −1 ∗ 5

39

Vertical Edge Detection

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

1 0 -1

1 0 -1

1 0 -1

∗

0 15

=

1 0 -1

1 0 -1

1 0 -1

40

Vertical Edge Detection

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

1 0 -1

1 0 -1

1 0 -1

∗

0 15 15

=

1 0 -1

1 0 -1

1 0 -1

41

Vertical Edge Detection

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

1 0 -1

1 0 -1

1 0 -1

∗

0 15 15 0

=

1 0 -1

1 0 -1

1 0 -1

42

Vertical Edge Detection

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

1 0 -1

1 0 -1

1 0 -1

∗

0 15 15 0

0
=

1 0 -1

1 0 -1

1 0 -1

43

Vertical Edge Detection

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

1 0 -1

1 0 -1

1 0 -1

∗

0 15 15 0

0 15 15 0

0 15 15 0

0 15 15 0

=

44

Vertical Edge Detection

0 0 0 5 5 5

0 0 0 5 5 5

0 0 0 5 5 5

0 0 0 5 5 5

0 0 0 5 5 5

0 0 0 5 5 5

1 0 -1

1 0 -1

1 0 -1

∗

0 -15 -15 0

0 -15 -15 0

0 -15 -15 0

0 -15 -15 0

=

It also tells us the
direction of the

transition.

45

Horizontal Edge Detection

5 5 5 5 5 5

5 5 5 5 5 5

5 5 5 5 5 5

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 -1

1 0 -1

1 0 -1

∗

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

=

If we use the same
filter

46

Horizontal Edge Detection

5 5 5 5 5 5

5 5 5 5 5 5

5 5 5 5 5 5

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 1 1

0 0 0

-1 -1 -1

∗

0 0 0 0

15 15 15 15

15 15 15 15

0 0 0 0

=

47

Diagonal Edge Detection

5 5 5 5 5 5

5 5 5 5 5 0

5 5 5 5 0 0

5 5 5 0 0 0

5 5 0 0 0 0

5 0 0 0 0 0

1 1 0

1 0 -1

0 -1 -1

∗

0 0 5 15

0 5 15 15

5 15 15 5

15 15 5 0

=

48

How does convolution help us?

1 0 -1

1 0 -1

1 0 -1

1 0 -1

2 0 -2

1 0 -1

Sobel filter

3 0 -3

10 0 -10

3 0 -3

Scharr filter

1/16 1/8 1/16

1/8 1/4 1/8

1/16 1/8 1/16

Gaussian filter

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

5 5 5 0 0 0

𝑤! 𝑤" 𝑤#
𝑤$ 𝑤% 𝑤&
𝑤' 𝑤(𝑤)

∗ =

How can we learn
these weights?

Image Output

Filter

Convolutional Neural Networks

Learn multiple filters

49 Slide: M. Ranzato

Feature Map

Image: Rob Fergus50

52

53

54

55

56

57

58

Why CNNs?

59

Number of parameters

30×30×3

𝑓. 𝑠ℎ𝑎𝑝𝑒
= 5,5,10

26×26×10 6,760 Responses

𝑥"
⋮

𝑥#788

𝑎 "

𝑎"
⋮

𝑎9798

𝑊 " . 𝑠ℎ𝑎𝑝𝑒 = (6760, 2700)

260 Parameters

~18M Parameters

Fully Connected
Approach

Use Local Regions (Sparsity of Connections)

61

000555

000555

000555

000555

000555

000555

-101

-101

-101

∗

015150

015150

015150

015150

=

The output for this window is only
influenced by the pixels

overlapping with the filter.

Reuse The Same Kernel Everywhere

• Interesting features can happen
anywhere in the image

• Share the same parameters across
different locations

• Convolutions with learned kernels (i.e.,
filters)

62

000555

000555

000555

000555

000555

000555

-101

-101

-101

∗

015150

015150

015150

015150

=

Benefits of Sparsity and
Reuse

• Uses less memory

• Needs less data

• Less prone to overfitting

• Built-in translation invariance

63

Convolutional Neural Networks
• Images
• 3D Objects
• DNA
• Tabular data
• Spectrograms
• Etc.

64

Recap

• Locally connected (sparsity):
— Each neuron is only connected to a few neurons in the previous layer.

These are usually neurons that we expect will exhibit certain features
• E.g., a neighborhood of pixels around a pixel in an image

• Shared weights:
— Since we expect similar features to be present anywhere in the input, we would

like these features to be detected everywhere. Therefore, we use neurons (i.e.,
filters) with shared weights.

• The neurons act as a feature detector:
— Searching for certain local patterns across the input

65

filter == kernel == neuron weights

