COSC 325: Introduction to Machine Learning

Dr. Hector Santos-Villalobos

Lecture 21: Artificial Neural Networks and Deep Learning

Class Announcements

Homework

Almost done with all the homework!!!!!!!

Course Project:

- Midterm report grades will be available 11/17
- Course Project Presentation Poster Logistics

Quizzes:

Weekly quiz as usual.

Exams:

Exam #2 is **next Thursday**, 11/21—same format.

Lectures:

- Last 15 Minutes: Tenure Teaching Evaluation
- Panel on Ethical Al 11/26. You will get attendance points by posting a question in the Discord #panel-on-ethical-ai channel (https://discord.com/channels/126314454408 2596050/1306342338926346260)

Poster Session Logistics

- 75 minutes lecture
 - Session 1 (16 teams)
 - 10 mins setup
 - 25 mins poster session
 - Session 2 (15 teams)
 - 10 mins setup
 - 25 mins poster session
 - Clean up
 - Last 5 minutes

- Peer Reviews
 - Students presenting in
 Session 1 will review projects
 in Session 2 and vice versa.
 - You will be assigned three projects to review
 - Spend 5-7 mins per project
 - Check Canvas Quiz CP
 Presentation Scoring Sheet
 (DRAFT)
 https://utk.instructure.com/co
 urses/206990/quizzes/439418

Review

- Hierarchical Clustering
 - Bottom-up approach: Agglomerative Complete Linkage
 - Dendrograms

Raschka, et. al., "Machine Learning with PyTorch and Scikit-Learn: Develop machine learning and deep learning models with Python"

Review

- Neural Networks
 - Universal function approximator
 - Learning with backpropagation
- The perceptron (artificial neuron)
- By the end of the lecture, we started discussing *Connectionism* and *Connectionist Machines*.

Today's Topics

Artificial Neural Networks

Deep Learning*

Touching a flame.

Response at scale.

Mid 1800s: The brain is comprised of interconnected neurons. ~100 Trillion Connections Emotions Movement

Connectionism (1873)

- Alexander Bain: philosopher, psychologist, mathematician, logician, linguist, professor
- Main ideas in the book "Mind and Body"
 - Neural groupings
 - Neurons excite and stimulate each other
 - Different input combinations can result in different outputs
 - Activation intensity influences the activation of connected neurons
 - Making memories
 - Neurons connections strengthen with repetitive inputs (Before Hebb's Law 1949)

Hebb's Law: Model for Neural Plasticity

- Novelist, schoolteacher, psychologist
- Main idea in book "The Organization of Behavior" (1949):
 - If neuron A repeatedly triggers neuron B, the synapses connecting these neurons get larger.
 - Hebb's Law: "Neurons that fire together wire together."

Connectionist Machines

- Multiple connectionist paradigms proposed
 - Alan Turing's Connectionist model (1948):
 - Parallel Distributed Processing (1986)
 - Rumelhart, Hinton, McClelland
 - Requirements of a connectionist system
 - Bechtel and Abrahamson (1991)
- Main properties
 - Network of processing elements
 - All world knowledge is stored in the connections between the elements

Von Neumann vs Connectionist Machines

12 Wikipedia is the source of the Von Neumann Machine diagram.

Pop Quiz

A neural network is a **Von Neumann Machine** because it is a network of processing elements, and all world knowledge is stored in the connections between the elements.

A. True

B. False

Math of a Neural Network

Modern Perceptron: *Adaptive Linear Neuron* (*Adaline*)

Modern Perceptron: Adaptive Linear Neuron (Adaline)

Learning with
Gradient Descent
$$w_i \coloneqq w_i + \Delta w_i$$
, $\Delta w_i = -\lambda \frac{\partial L}{\partial w_i}$

Check Lecture 8

Neural Network

Perceptron Layer

Perceptron Layer (2)

Perceptron Layer (3)

Multi-Layer Perceptron

$$\begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix} = \\ = [\sigma(XW_1 + b_1), \sigma(XW_2 + b_2), \sigma(XW_3 + b_3)] \\ = \sigma([XW_1 + b_1, XW_2 + b_2, XW_3 + b_3]) \\ = \sigma(X[W_1, W_2, W_3] + [b_1, b_2, b_3])$$

 b_i

 $z_j = \sum x_i w_{i,j} + b_j$

 $x_1 \quad w_{1,i}$

 $x_2 \quad w_{2,i}$ $x_3 \quad W_{3,j}$

÷

 x_m

 $W_{m,j}$

 $a_2 = \sigma(XW_2 + b_2)$

$$j = 3$$

$$\int \sigma(z_{j}) \rightarrow a_{j} \in \mathbb{R} \qquad a_{3} = \sigma(XW_{3} + b_{3})$$

$$a^{[1]} = \left[a_{1}^{[1]}, a_{2}^{[1]}, a_{3}^{[1]}\right] = \sigma(XW^{[1]} + b^{[1]})$$

$$\left[W_{1}^{[1]}, W_{2}^{[1]}, W_{3}^{[1]}\right] \qquad \left[b_{1}^{[1]}, b_{2}^{[1]}, b_{3}^{[1]}\right]$$

$$(n, 3) \qquad (1, 3)$$

Numpy adds these with broadcasting (i.e., $ones(n, 1) \cdot b^{[l]}$)

 $\begin{bmatrix} b_1^{[1]}, b_2^{[1]}, b_3^{[1]} \end{bmatrix}$

(1,3)

Multi-Layer Perceptron

$$\begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix} = \\ = [\sigma(XW_1 + b_1), \sigma(XW_2 + b_2), \sigma(XW_3 + b_3)] \\ = \sigma([XW_1 + b_1, XW_2 + b_2, XW_3 + b_3]) \\ = \sigma(X[W_1, W_2, W_3] + [b_1, b_2, b_3])$$

 $a_2 = \sigma(XW_2 + b_2)$

$$a^{[1]} = \left[a_1^{[1]}, a_2^{[1]}, a_3^{[1]}\right] = \sigma(XW^{[1]} + b^{[1]})$$
$$a^{[0]} = X \Rightarrow a^{[1]} = \sigma(a^{[0]}W^{[1]} + b^{[1]})$$

$$j = 3$$

$$j = 3$$

$$x_1 \quad w_{1,j}$$

$$x_2 \quad w_{2,j}$$

$$x_3 \quad w_{3,j}$$

$$\vdots \quad w_{m,j}$$

$$x_m \quad (z_j) \rightarrow a_j \in \mathbb{R}$$

$$a_3 = \sigma(XW_3 + b_3)$$

Multi-Layer Perceptron

 $a_2 = \sigma(XW_2 + b_2)$

 $a^{[1]} = \left[a_1^{[1]}, a_2^{[1]}, a_3^{[1]}\right] = \sigma(XW^{[1]} + b^{[1]})$ $a^{[0]} = X \Rightarrow a^{[1]} = \sigma(a^{[0]}W^{[1]} + b^{[1]})$ $a_3 = \sigma(XW_3 + b_3)$

Output of layer *l*: $a^{[l]} = \sigma(a^{[l-1]}W^{[l]} + b^{[l]})$

Example

$$a^{[l]} = \sigma (a^{[l-1]}W^{[l]} + b^{[l]})$$

$$W^{[1]} = \begin{bmatrix} 1 & 2\\ 3 & 4\\ 5 & 6 \end{bmatrix}$$

$$W^{[2]} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

With this information, answer:

- How many layers are in this network?
- How many neurons are in layer 1?
- How many features are in the data?
- How many neurons are in the output layer?
- How many parameters are in the network?

Example

$$a^{[l]} = \sigma (a^{[l-1]}W^{[l]} + b^{[l]})$$

 $W^{[2]} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

With this information, answer:

- How many layers are in this network?
- How many neurons are in layer 1?
- How many features are in the data?
- How many neurons are in the output layer?
- How many parameters are in the network?

Recall input layer does not count as a layer. We have two weight matrices for layers 1 and 2. Therefore, we have a 2-Layer network.

Example

$$a^{[l]} = \sigma (a^{[l-1]}W^{[l]} + b^{[l]})$$

With this information, answer:

- How many layers are in this network?
- How many neurons are in layer 1?
- How many features are in the data?
- How many neurons are in the output layer?
- How many parameters are in the network?

Layer weight matrix dimensions $(m^{[l-1]}, m^{[l]})$, where $m^{[l]}$ is the number of neurons in layer l and $m^{[l-1]}$ is the number of neurons in the previous layer l - 1.

- Layer 1 $W^{[1]} \to (m^{[0]}, m^{[1]}) = (3, 2)$
- There are 2 neurons in Layer 1
- There are 3 neurons in input layer ⇒ There are three features in our dataset.

Example

$$a^{[l]} = \sigma (a^{[l-1]}W^{[l]} + b^{[l]})$$

With this information, answer:

- How many layers are in this network?
- How many neurons are in layer 1?
- How many features are in the data?
- How many neurons are in the output layer?
- How many parameters are in the network?

Layer weight matrix dimensions $(m^{[l-1]}, m^{[l]})$, where $m^{[l]}$ is the number of neurons in layer l and $m^{[l-1]}$ is the number of neurons in the previous layer l - 1.

- Layer 2: $W^{[2]} \to (m^{[1]}, m^{[2]}) = (2, 1)$
- There is 1 neuron in Layer 2 (Output Layer)
- We also confirm there are 2 neurons in Layer 1

Example

$$a^{[l]} = \sigma (a^{[l-1]}W^{[l]} + b^{[l]})$$

 $W^{[2]} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

With this information, answer:

- How many layers are in this network?
- How many neurons are in layer 1?
- How many features are in the data?
- How many neurons are in the output layer?
- How many parameters are in the network?

The number of parameters in a layer is the number of weights and biases or $m^{[l-1]} \times m^{[l]} + m^{[l]}$.

- Layer 1 $W^{[1]} \rightarrow (3,2) \Rightarrow params = 3 \times 2 + 2 = 8$
- Layer 2 $W^{[2]} \rightarrow (2,1) \Rightarrow params = 2 \times 1 + 1 = 3$
- Total number of parameters = 11

Pop Quiz

If the second and third layers of a neural network has 5 and 4 neurons, respectively. How many parameters are in the third layer?

Recall
$$a^{[l]} = \sigma (a^{[l-1]}W^{[l]} + b^{[l]})$$

A. 4

B. 20

C. 24

D. 5

Review

• ANN

- Connectionism machines
 - Network of processing units
 - Memory is in the connections
- Math
 - Matrix multiplication

Next Lecture

- Deep Neural Networks
- Convolutional Neural Networks
- Applications

Helper Slides