
https://ttpoll.com/p/965065

COSC 325: Introduction to Machine
Learning

Dr. Hector Santos-Villalobos

https://ttpoll.com/p/965065

Lecture 21:
Artificial Neural
Networks and
Deep Learning

https://ttpoll.com/p/965065

Class Announcements
Homework
Almost done with all the homework!!!!!!!

Course Project:
• Midterm report grades will be available 11/17
• Course Project Presentation Poster Logistics

Quizzes:
Weekly quiz as usual.

Exams:
Exam #2 is next Thursday, 11/21—same format.

Lectures:
• Last 15 Minutes: Tenure Teaching Evaluation
• Panel on Ethical AI 11/26. You will get

attendance points by posting a question in the
Discord #panel-on-ethical-ai channel
(https://discord.com/channels/126314454408
2596050/1306342338926346260)

3

https://ttpoll.com/p/965065

Poster Session Logistics

• 75 minutes lecture
— Session 1 (16 teams)
• 10 mins setup
• 25 mins poster session

— Session 2 (15 teams)
• 10 mins setup
• 25 mins poster session

— Clean up
• Last 5 minutes

• Peer Reviews
— Students presenting in

Session 1 will review projects
in Session 2 and vice versa.

— You will be assigned three
projects to review
• Spend 5-7 mins per project

— Check Canvas Quiz CP
Presentation Scoring Sheet
(DRAFT)
https://utk.instructure.com/co
urses/206990/quizzes/439418

4

https://utk.instructure.com/courses/206990/quizzes/439418
https://utk.instructure.com/courses/206990/quizzes/439418

https://ttpoll.com/p/965065

Review

• Hierarchical Clustering
— Bottom-up approach: Agglomerative

Complete Linkage
— Dendrograms

5

Raschka, et. al., “Machine Learning with PyTorch and Scikit-Learn:
Develop machine learning and deep learning models with Python”

https://www.kaggle.com/datasets/halimedogan/usarrests

USA Arrests Cluster Dendrogram

D
is

ta
n

ce

ID14 ID12

ID13

https://ttpoll.com/p/965065

Review

• Neural Networks
— Universal function approximator
— Learning with backpropagation

• The perceptron (artificial neuron)

• By the end of the lecture, we started
discussing Connectionism and
Connectionist Machines.

6

!" = $1 &'	!"!"#$%& ≥ *
0 ,-ℎ/01&2/34$1$ + 6

!!
!"
!#
⋮

#!
#"
##
#$

!$

$%%&'()* ∈ 	ℝ'(1, + ,)

Activation
Function

Real inputs and
outputs.

) = #+

!(∈ 	ℝ #(∈ 	ℝ

Perceptron

https://ttpoll.com/p/965065

Today’s Topics

7

Artificial Neural Networks Deep Learning*

https://ttpoll.com/p/965065

8

Response at scale.

Emotions
Movement

Touching a flame.

Mid 1800s: The brain is comprised
of interconnected neurons.
~100 Trillion Connections

https://ttpoll.com/p/965065

Connectionism (1873)

• Alexander Bain: philosopher, psychologist,
mathematician, logician, linguist, professor

• Main ideas in the book “Mind and Body”
— Neural groupings
• Neurons excite and stimulate each other
• Different input combinations can result in different outputs
• Activation intensity influences the activation of connected

neurons

— Making memories
• Neurons connections strengthen with repetitive inputs

(Before Hebb’s Law 1949)

9

https://ttpoll.com/p/965065

Hebb’s Law: Model for Neural Plasticity

10

• Novelist, schoolteacher, psychologist

• Main idea in book “The Organization of Behavior”
(1949):
— If neuron A repeatedly triggers neuron B, the synapses

connecting these neurons get larger.
— Hebb’s Law: “Neurons that fire together wire together.”

𝑥! = 𝑓 $
"#$

%

𝑤"𝑥"

Response of a neuron xj

∆𝑤"! = 𝜂𝑥"𝑥!

Evolution of synaptic weight
Learning Rate

Weight Update
Interaction between

neurons i and j

Weights can be
different now.

https://ttpoll.com/p/965065

Connectionist Machines

• Multiple connectionist paradigms proposed
— Alan Turing’s Connectionist model (1948):
— Parallel Distributed Processing (1986)

• Rumelhart, Hinton, McClelland

— Requirements of a connectionist system
• Bechtel and Abrahamson (1991)

• Main properties
— Network of processing elements
— All world knowledge is stored in the connections

between the elements

11 Source: Carnegie Mellon Univeristy, Bhiksha Raj and Rita Singh, 11-785 Introduction to Deep Learning

https://ttpoll.com/p/965065

Von Neumann vs Connectionist Machines

12

Von Neumann Machines

The typical modern computer!

Connectionist Machines
Processing Units

Memory

Wikipedia is the source of the Von Neumann Machine diagram.

https://ttpoll.com/p/965065

13

Pop Quiz

https://ttpoll.com/p/965065

Math of a Neural
Network

14

https://ttpoll.com/p/965065

15

Modern Perceptron: Adaptive Linear Neuron
(Adaline)

𝑧 =(𝑥!𝑤! + 𝑏

𝑥!
𝑥"
𝑥#
⋮

𝑤!
𝑤"
𝑤#
𝑤$

𝑥$

𝑎 = &𝑦%&'()* ∈ 	ℝ𝜎(𝑧)

Sigmoid𝑏 = 𝑤+ 𝑤(≔ 𝑤(+ ∆𝑤(

Learning with ??

https://ttpoll.com/p/965065

16

Modern Perceptron: Adaptive Linear Neuron
(Adaline)

𝑧 =(𝑥!𝑤! + 𝑏

𝑥!
𝑥"
𝑥#
⋮

𝑤!
𝑤"
𝑤#
𝑤$

𝑥$

𝑎 ∈ 	ℝ𝜎(𝑧)

Sigmoid𝑏 = 𝑤+ 𝑤(≔ 𝑤(+ ∆𝑤(, 	Δ𝑤(= −𝜆 ,-
,.!

Learning with
Gradient Descent

𝑑ℒ
𝑑𝑧

= 𝑎 − 𝑦
Assumes
LogLoss

𝑑ℒ
𝑑𝑤"

= (𝑎 − 𝑦)𝑥"
𝑑ℒ
𝑑𝑤#

= (𝑎 − 𝑦)𝑥#
𝑑ℒ
𝑑𝑏 = (𝑎 − 𝑦)

Check Lecture 8

https://ttpoll.com/p/965065

Neural Network

ℒ(𝑎, 𝑦)𝑎 = 𝜎(𝑧)𝑧 = 𝑊!𝑋 + 𝑏

𝑋

𝑊

𝑏

…

𝑥$

𝑥5

… (𝑦

𝑥$

𝑥5

… (𝑦 = 𝑎

𝑏

𝑤$

𝑤5

…

?

https://ttpoll.com/p/965065

18

Perceptron Layer

𝑧" =.𝑥#𝑤#," + 𝑏"

𝑥!
𝑥"
𝑥#
⋮

𝑤!,0
𝑤",0
𝑤#,0
𝑤$,0

𝑥$

𝑎0 ∈ 	ℝ𝜎 (𝑧$)

Sigmoid𝑏0
𝑤(,0 ≔ 𝑤(,0 + ∆𝑤(,0, 	Δ𝑤(,0 = −𝜆

𝜕𝐿
𝜕𝑤(,0

Learning with
Gradient Descent

https://ttpoll.com/p/965065

19

Perceptron Layer (2)

𝑧" =.𝑥#𝑤#," + 𝑏"

𝑥!
𝑥"
𝑥#
⋮

𝑤!,0
𝑤",0
𝑤#,0
𝑤$,0

𝑥$

𝑎0 ∈ 	ℝ𝜎 (𝑧$)

Sigmoid𝑏0
𝑤(,0 ≔ 𝑤(,0 + ∆𝑤(,0, 	Δ𝑤(,0 = −𝜆

𝜕𝐿
𝜕𝑤(,0

Learning with
Gradient Descent

𝑊0 =

𝑤!,0
𝑤#,$
⋮

𝑤&,$

⇒ 𝑧0 = 𝑋𝑊0 + 𝑏0We can define:

https://ttpoll.com/p/965065

20

Perceptron Layer (3)
𝑗 = 1

𝑗 = 2

𝑗 = 3

https://ttpoll.com/p/965065

21

Perceptron Layer (4)
𝑗 = 1

𝑗 = 2

𝑗 = 3

𝑎! = 𝜎 𝑋𝑊! + 𝑏!

𝑎" = 𝜎 𝑋𝑊" + 𝑏"

𝑎# = 𝜎 𝑋𝑊# + 𝑏#

𝑎"	
Size (𝑛, 1)

𝑎#	
Size (𝑛, 1)

𝑎'	
Size (𝑛, 1)

𝑋 size
(𝑛,𝑚) 𝑊" size

(𝑚, 1)

Scalar
(Addition by

Broadcasting)

https://ttpoll.com/p/965065

22

Perceptron Layer (5)
𝑗 = 1

𝑗 = 2

𝑗 = 3

𝑎! = 𝜎 𝑋𝑊! + 𝑏!

𝑎" = 𝜎 𝑋𝑊" + 𝑏"

𝑎# = 𝜎 𝑋𝑊# + 𝑏#

𝑎" 𝑎# 𝑎$ =
	 = 𝜎 𝑋𝑊" + 𝑏" , 𝜎 𝑋𝑊# + 𝑏# , 𝜎 𝑋𝑊$ + 𝑏$

	 = 𝜎 [𝑋𝑊" + 𝑏", 𝑋𝑊# + 𝑏#, 𝑋𝑊$ + 𝑏$]

																					
𝑎"	

Size (𝑛, 1)

𝑎#	
Size (𝑛, 1)

𝑎'	
Size (𝑛, 1)

𝑎", 𝑎#, 𝑎' 	
Size (𝑛, 3)

Activation function is an
element-wise operation.

Layer output is a matrix
of size (𝑛, 𝑑),	where 𝑑 is

the number of neurons in
the layer.

https://ttpoll.com/p/965065

23

Perceptron Layer (5)
𝑗 = 1

𝑗 = 2

𝑗 = 3

𝑎! = 𝜎 𝑋𝑊! + 𝑏!

𝑎" = 𝜎 𝑋𝑊" + 𝑏"

𝑎# = 𝜎 𝑋𝑊# + 𝑏#

𝑎" 𝑎# 𝑎$ =
	 = 𝜎 𝑋𝑊" + 𝑏" , 𝜎 𝑋𝑊# + 𝑏# , 𝜎 𝑋𝑊$ + 𝑏$

	 = 𝜎 [𝑋𝑊" + 𝑏", 𝑋𝑊# + 𝑏#, 𝑋𝑊$ + 𝑏$]

																													 = 𝜎 𝑋 𝑊",𝑊#,𝑊$ + 𝑏", 𝑏#, 𝑏$ 	

𝑋 size
(𝑛,𝑚)

𝑊", 𝑊#, and 𝑊'
Size (𝑚, 1)

𝑎", 𝑎#, 𝑎' 	
Size (𝑛, 3)

https://ttpoll.com/p/965065

24

Perceptron Layer (5)
𝑗 = 1

𝑗 = 2

𝑗 = 3

𝑎! = 𝜎 𝑋𝑊! + 𝑏!

𝑎" = 𝜎 𝑋𝑊" + 𝑏"

𝑎# = 𝜎 𝑋𝑊# + 𝑏#

𝑎" 𝑎# 𝑎$ =
	 = 𝜎 𝑋𝑊" + 𝑏" , 𝜎 𝑋𝑊# + 𝑏# , 𝜎 𝑋𝑊$ + 𝑏$

	 = 𝜎 [𝑋𝑊" + 𝑏", 𝑋𝑊# + 𝑏#, 𝑋𝑊$ + 𝑏$]

																													 = 𝜎 𝑋 𝑊",𝑊#,𝑊$ + 𝑏", 𝑏#, 𝑏$ 	

𝑋 size
(𝑛,𝑚)

𝑊",𝑊#,𝑊'
Size (𝑚, 3)

𝑎", 𝑎#, 𝑎'
Size (𝑛, 3)

https://ttpoll.com/p/965065

25

Perceptron Layer (5)
𝑗 = 1

𝑗 = 2

𝑗 = 3

𝑎! = 𝜎 𝑋𝑊! + 𝑏!

𝑎" = 𝜎 𝑋𝑊" + 𝑏"

𝑎# = 𝜎 𝑋𝑊# + 𝑏#

𝑎" 𝑎# 𝑎$ =
	 = 𝜎 𝑋𝑊" + 𝑏" , 𝜎 𝑋𝑊# + 𝑏# , 𝜎 𝑋𝑊$ + 𝑏$

	 = 𝜎 [𝑋𝑊" + 𝑏", 𝑋𝑊# + 𝑏#, 𝑋𝑊$ + 𝑏$]

																													 = 𝜎 𝑋 𝑊",𝑊#,𝑊$ + 𝑏", 𝑏#, 𝑏$ 	

𝑋 size
(𝑛,𝑚)

𝑊",𝑊#,𝑊'
Size (𝑚, 3)

Dot product	𝑿 𝑾𝟏,𝑾𝟐,𝑾𝟑
size
(𝑛, 3)

𝑎", 𝑎#, 𝑎'
Size (𝑛, 3)

https://ttpoll.com/p/965065

26

Multi-Layer Perceptron
𝑗 = 1

𝑗 = 2

𝑗 = 3

𝑎! = 𝜎 𝑋𝑊! + 𝑏!

𝑎" = 𝜎 𝑋𝑊" + 𝑏"

𝑎# = 𝜎 𝑋𝑊# + 𝑏#

𝑎" 𝑎# 𝑎$ =
	 = 𝜎 𝑋𝑊" + 𝑏" , 𝜎 𝑋𝑊# + 𝑏# , 𝜎 𝑋𝑊$ + 𝑏$

	 = 𝜎 [𝑋𝑊" + 𝑏", 𝑋𝑊# + 𝑏#, 𝑋𝑊$ + 𝑏$]

																													 = 𝜎 𝑋 𝑊",𝑊#,𝑊$ + 𝑏", 𝑏#, 𝑏$ 	

𝑎 ! = 𝑎!
! , 𝑎"

! , 𝑎#
! = 𝜎 𝑋𝑊 ! + 𝑏 !

𝑊"
" ,𝑊#

" ,𝑊'
" 𝑏"

" , 𝑏#
" , 𝑏'

"

(𝑛, 3) (1,3)

Numpy adds these with
broadcasting (i.e., 𝑜𝑛𝑒𝑠 𝑛, 1 ⋅ 𝑏 %)

https://ttpoll.com/p/965065

27

Multi-Layer Perceptron
𝑗 = 1

𝑗 = 2

𝑗 = 3

𝑎! = 𝜎 𝑋𝑊! + 𝑏!

𝑎" = 𝜎 𝑋𝑊" + 𝑏"

𝑎# = 𝜎 𝑋𝑊# + 𝑏#

𝑎" 𝑎# 𝑎$ =
	 = 𝜎 𝑋𝑊" + 𝑏" , 𝜎 𝑋𝑊# + 𝑏# , 𝜎 𝑋𝑊$ + 𝑏$

	 = 𝜎 [𝑋𝑊" + 𝑏", 𝑋𝑊# + 𝑏#, 𝑋𝑊$ + 𝑏$]

																													 = 𝜎 𝑋 𝑊",𝑊#,𝑊$ + 𝑏", 𝑏#, 𝑏$ 	

𝑎 ! = 𝑎!
! , 𝑎"

! , 𝑎#
! = 𝜎 𝑋𝑊 ! + 𝑏 !

𝑎 + = 𝑋 ⇒	 𝑎 ! = 𝜎 𝑎 + 𝑊 ! + 𝑏 !

https://ttpoll.com/p/965065

28

Multi-Layer Perceptron
𝑗 = 1

𝑗 = 2

𝑗 = 3

𝑎! = 𝜎 𝑋𝑊! + 𝑏!

𝑎" = 𝜎 𝑋𝑊" + 𝑏"

𝑎# = 𝜎 𝑋𝑊# + 𝑏#

𝑎" 𝑎# 𝑎$ =
	 = 𝜎 𝑋𝑊" + 𝑏" , 𝜎 𝑋𝑊# + 𝑏# , 𝜎 𝑋𝑊$ + 𝑏$

	 = 𝜎 [𝑋𝑊" + 𝑏", 𝑋𝑊# + 𝑏#, 𝑋𝑊$ + 𝑏$]

																													 = 𝜎 𝑋 𝑊",𝑊#,𝑊$ + 𝑏", 𝑏#, 𝑏$ 	

𝑎 ! = 𝑎!
! , 𝑎"

! , 𝑎#
! = 𝜎 𝑋𝑊 ! + 𝑏 !

𝑎 + = 𝑋 ⇒	 𝑎 ! = 𝜎 𝑎 + 𝑊 ! + 𝑏 !

𝒂 𝒍 = 𝝈 𝒂 𝒍C𝟏𝑾 𝒍 + 𝒃 𝒍Output of layer 𝒍:

https://ttpoll.com/p/965065

Example

𝑎 % = 𝜎 𝑎 %1! 𝑊 % + 𝑏 %

𝑊 ! =
1 2
3 4
5 6

𝑊 " = 1
2

With this information, answer:
• How many layers are in this network?
• How many neurons are in layer 1?
• How many features are in the data?
• How many neurons are in the output layer?
• How many parameters are in the network?

https://ttpoll.com/p/965065

Example

𝑎 % = 𝜎 𝑎 %1! 𝑊 % + 𝑏 %

𝑊 ! =
1 2
3 4
5 6

Recall input layer does not count as a layer.
We have two weight matrices for layers 1 and 2.
Therefore, we have a 2-Layer network.𝑊 " = 1

2

With this information, answer:
• How many layers are in this network?
• How many neurons are in layer 1?
• How many features are in the data?
• How many neurons are in the output layer?
• How many parameters are in the network?

https://ttpoll.com/p/965065

Example

𝑎 % = 𝜎 𝑎 %1! 𝑊 % + 𝑏 %

𝑊 ! =
1 2
3 4
5 6

𝑊 " = 1
2

Layer weight matrix dimensions 𝑚 %1! , 𝑚 % , where 𝑚 %
is the number of neurons in layer 𝑙 and 𝑚 %1! is the
number of neurons in the previous layer 𝑙 − 1.

• Layer 1 𝑊 ! → 𝑚 + , 𝑚 ! = 3,2

• There are 2 neurons in Layer 1

• There are 3 neurons in input layer ⇒ There are three
features in our dataset.

With this information, answer:
• How many layers are in this network?
• How many neurons are in layer 1?
• How many features are in the data?
• How many neurons are in the output layer?
• How many parameters are in the network?

https://ttpoll.com/p/965065

Example

𝑎 % = 𝜎 𝑎 %1! 𝑊 % + 𝑏 %

𝑊 ! =
1 2
3 4
5 6

𝑊 " = 1
2

Layer weight matrix dimensions 𝑚 %1! , 𝑚 % , where 𝑚 %
is the number of neurons in layer 𝑙 and 𝑚 %1! is the
number of neurons in the previous layer 𝑙 − 1.

• Layer 2: 𝑊 " → 𝑚 ! , 𝑚 " = 2,1

• There is 1 neuron in Layer 2 (Output Layer)

• We also confirm there are 2 neurons in Layer 1

With this information, answer:
• How many layers are in this network?
• How many neurons are in layer 1?
• How many features are in the data?
• How many neurons are in the output layer?
• How many parameters are in the network?

https://ttpoll.com/p/965065

Example

𝑎 % = 𝜎 𝑎 %1! 𝑊 % + 𝑏 %

𝑊 ! =
1 2
3 4
5 6

𝑊 " = 1
2

The number of parameters in a layer is the number of
weights and biases or 𝑚 %1! ×𝑚 % +𝑚 % .

• Layer 1 𝑊 ! → 3,2 ⇒ 𝑝𝑎𝑟𝑎𝑚𝑠 = 	3×2 + 2 = 8

• Layer 2 𝑊 " → 2,1 ⇒ 𝑝𝑎𝑟𝑎𝑚𝑠 = 2×1 + 1 = 3

• Total number of parameters = 11

With this information, answer:
• How many layers are in this network?
• How many neurons are in layer 1?
• How many features are in the data?
• How many neurons are in the output layer?
• How many parameters are in the network?

https://ttpoll.com/p/965065

34

Pop Quiz

𝑎 % = 𝜎 𝑎 %1! 𝑊 % + 𝑏 %

https://ttpoll.com/p/965065

Review

• ANN
— Connectionism machines
• Network of processing units
• Memory is in the connections

— Math
• Matrix multiplication

35

https://ttpoll.com/p/965065

Next Lecture

• Deep Neural Networks

• Convolutional Neural Networks
• Applications

36

https://ttpoll.com/p/965065

Helper Slides

37

