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Class Announcements
Homework
Homework #5 due 11/06
Homework #6 due 11/13

Course Project:
Midterm Report due Tomorrow, 
Wednesday, 10/30.

Lectures:
11/25 Lecture: No attendance record. 
Thanksgiving week.

Quizzes:
Weekly quiz as usual.

Exams:
Next exam 11/21. Same format.
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Review

• Feature Selection
— Lasso Regularization
— Sequential Backward Selection
— Random Forest Feature Selection
— Permutation Feature Importance

• Intro to Feature Extraction
— Principal Component Analysis 

(PCA)
— Linear Discriminant Analysis (LDA)
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Today’s Topics

Feature Selection

5

Feature Extraction



https://ttpoll.com/p/664723

Terminology Check

• Feature selection:

• Feature extraction: 

6
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Terminology Check

• Feature selection: keeping the best or most important features for 
machine algorithm training and execution performance. Besides 
feature scaling, denoising, and encoding, the original feature intent 
and nature remain.

• Feature extraction: transforming the original features into a new 
feature space that retains the essential information about the original 
dataset.

7
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Feature 
Extraction
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Dimensionality Reduction

• Transforms original data onto a new feature subspace with lower 
dimensionality.
— Other names: data summarization or compression.

• Benefits
— Reduce storage space requirements
— Increase computational efficiency of the ML algorithm
— Improve predictive performance
• Address the curse of dimensionality

9
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Curse of dimensionality

• Coined by Richard Bellman, (Mathematician)

• As the number of features or dimensions grows, the amount of data (# 
of samples) we need to generalize grows exponentially. 
— High-dimensional data is typically sparse
— Leads to model overfitting and poor generalization

10
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Feature Extraction

• Principal Component Analysis (PCA)
• Linear Discriminant Analysis (LDA)
• t-distributed stochastic neighbor embedding (t-SNE)

11
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Principal component analysis (PCA)

• Unsupervised linear transformation 
technique that is widely used across 
different fields. 

• Popular applications: 
— Dimensionality reduction
— Feature extraction
— Exploratory data analysis
— Denoising of timeseries signals 
— Genome data and gene expression analysis

12

Source: Raschka, et. al., “Machine Learning with PyTorch and Scikit-Learn” 
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Objective of PCA

• We have a dataset sample 𝑥 ! = 𝑥"
! , 𝑥#

! , … , 𝑥$
! , 𝑥 ! ∈ ℝ$

• We want to find a projection matrix 𝑊 ∈ ℝ$×&, where
𝑥 ! 𝑊 = 𝑧 !

• Resulting in the new vector
𝑧 ! = 𝑧"

! , 𝑧#
! , … , 𝑧&

! , 	 𝑧 ! ∈ ℝ&

• The output vector is a lower dimensional feature space with 𝑘 ≪ 𝑚

13
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Projections

𝑥!

𝑥"

𝑢

Unit vector 𝑢 → 𝑢#𝑢 = 1

𝑥"
$ , 𝑥!

$

Projection 𝑥 $ 𝑢
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Variance  and Principal Components 
Illustration

𝑥!

𝑥"
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Variance  and Principal Components 
Illustration

𝑥!

𝑥"

Loss of 
information
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Variance  and Principal Components 
Illustration

𝑥!

𝑥"

PC1

𝑥!

𝑥"

PC1

PC2

𝑋𝑊 = 𝑍
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Check out this tutorial on PCA!

https://www.youtube.com/watch?v=FD4DeN81ODY 

18
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PCA Algorithm

1. Standardize original feature data 𝑥 (Note: Assumes normality)

2. Construct features covariance matrix Σ
3. Decompose Σ in eigenvectors and eigenvalues

4. Compute Explained Variance
1. Sort eigenvalues in decreasing order
2. Rank eigenvector importance based on eigenvalues

5. Construct projection matrix 𝑊
6. Transform original feature data 𝑥 with 𝑊 to generate 𝑧 

19
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Eigendecomposition Review

• Eigendecomposition is the factorization of 
a square matrix into eigenvalues and 
eigenvectors
— Eigenvalues and eigenvectors come in pairs.
• Eigenvalues: variance magnitude
• Eigenvector: direction of variance (unchanged under 

linear transforms) Also known as Principal Components 
(PC)

20

Source: Raschka, et. al., “Machine Learning with PyTorch and Scikit-Learn” 
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Eigendecomposition Review

• Eigendecomposition is the factorization of a 
square matrix into eigenvalues and eigenvectors
— Eigenvalues and eigenvectors come in pairs.

• Eigenvalues: variance magnitude
• Eigenvector: direction of variance (unchanged under linear 

transforms). Also known as Principal Components (PC)

• The covariance matrix is square and symmetric, 
Σ = Σ%
— Real eigenvalues
— Orthogonal eigenvectors

• The eigenvector with the largest eigenvalue points 
in the direction of the largest variance in the data

21

Source: Raschka, et. al., “Machine Learning with PyTorch and Scikit-Learn” 
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Step 2: Covariance Construction

• The covariance between two feature vectors 𝑥! and 𝑥" is given by

  𝜎!# =
$

%&$
∑'($% 𝑥!

' − 𝜇! 𝑥"
' − 𝜇" , 

• 𝜇! and 𝜇" are the sample means for features 𝑗 and 𝑙, respectively
— Note that they are zero after standardization

• Example of a covariance matrix for dataset with three features

Σ =
𝜎$$ 𝜎$) 𝜎$)
𝜎)$ 𝜎)) 𝜎)*
𝜎*$ 𝜎*) 𝜎**
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Step 3: Eigendecomposition

• We want to find the eigenvalues 𝜆 and eigenvectors 𝑣 that satisfy the following 
equation

Σ𝑣 = 𝜆𝑣

• Computing these values and vectors is beyond this course. For those interested in 
the theory, please visit the following 3Blue1Brown video tutorial, “Eigenvectors 
and eigenvalues”
— Link: https://www.youtube.com/watch?v=PFDu9oVAE-g 

23

https://www.youtube.com/watch?v=PFDu9oVAE-g
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Step 3: Eigendecomposition
• We want to find the eigenvalues 𝜆 and eigenvectors 𝑣 that satisfy the following 

equation

Σ𝑣 = 𝜆𝑣

• Computing these values and vectors is beyond this course. For those interested in 
the theory, please visit the following 3Blue1Brown video tutorial, “Eigenvectors 
and eigenvalues”
— Link: https://www.youtube.com/watch?v=PFDu9oVAE-g 

• We will use the Numpy library to compute eigenvalues and eigenvectors
eigen_vals,	eigen_vectors	=	np.linalg.eig(cov_mat)

24

https://www.youtube.com/watch?v=PFDu9oVAE-g


https://ttpoll.com/p/664723

PCA Algorithm

1. Standardize original feature data 𝑥 (Note: Assumes normality)

2. Construct features covariance matrix Σ
3. Decompose Σ in eigenvectors and eigenvalues

4. Compute Explained Variance
1. Sort eigenvalues in decreasing order
2. Use eigenvalues order to rank eigenvector importance

5. Construct projection matrix 𝑊
6. Transform original feature data 𝑥 with 𝑊 to generate 𝑧 

25
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Step 4: Compute Explained Variance

• Select a subset of 𝑘 eigenvectors that contains most of the 
information (variance) (i.e., the corresponding 𝑘-largest eigenvalues)

• How do we pick 𝑘?
— Hyperparameter tuning
— Better way: By using Total and Explained Variance
• Compute the Explained Variance Ratio (EVR) =

%!
∑!"#
$ %!

• Compute the cumulative sum of the EVR (Use Numpy cumsum function on EVR)
• Select the number of eigenvectors that reach the desired cumulative value.

26
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Step 4: Select the 𝒌 most important 
eigenvectors: EVR

SKLearn Wine dataset.

Source: Raschka, et. al., “Machine Learning with PyTorch and Scikit-Learn” 

EVR =
𝜆!

∑!"#$ 𝜆!
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Step 4b: Select the 𝒌 most important 
eigenvectors: Sort eigenvalues/vector
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Step 5: Construct projection matrix 𝑾
• You have 𝑘 eigenvectors 𝑣", 𝑣#, … , 𝑣& where 𝑣- ∈ ℝ$

• The matrix 𝑊 should end up with shape 𝑚×𝑘

• Therefore, 𝑊 = 𝑣" 𝑣# … 𝑣&  
— You can use np.hstack() function

29
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PCA Algorithm

1. Standardize original feature data 𝑥 (Note: Assumes normality)

2. Construct features covariance matrix Σ
3. Decompose Σ in eigenvectors and eigenvalues

4. Compute Explained Variance
1. Sort eigenvalues in decreasing order
2. Use eigenvalues order to rank eigenvector importance

5. Construct projection matrix 𝑊
6. Transform original feature data 𝒙 with 𝑾 to generate 𝒛 

30
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Step 6: Transform original feature data 𝒙 with 
𝑾 to generate 𝒛 

• Sample transformation:
𝑧 ! = 𝑥 ! 𝑊

• Whole dataset transformation:
𝑋./0 = 𝑋𝑊

• Your ML algorithm ingests 𝑋./0 instead of 𝑋

31
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SkLearn Wine Raw 
Features
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SkLearn Wine Dataset PC1 and PC2

Source: Raschka, et. al., “Machine Learning with PyTorch and Scikit-Learn” 
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Pop Quiz
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Can we learn anything about the raw features 
from the Principal Components?

35
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Loadings

• Principal components are a 
combination of original features

• How can we assess the contributions 
of the original features?
— Compute loadings

𝑙𝑜𝑎𝑑𝑖𝑛𝑔𝑠 = 𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟𝑠 ∗ 𝑛𝑝. 𝑠𝑞𝑟𝑡 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑠
— The loadings measures the correlation 

between the original features and the 
principal components.

36

Source: Raschka, et. al., “Machine Learning with PyTorch and Scikit-Learn” 
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Application Example: DNA2Face

Srinivas, et. al., “DNA2FACE: An approach to correlating 
3D facial structure and DNA,” IJCB, 2017
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Feature Extraction

• Principal Component Analysis (PCA)

• Linear Discriminant Analysis (LDA)
• t-distributed stochastic neighbor embedding (t-SNE)

38
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Linear Discriminant Analysis (LDA)

• Also known as Fisher’s LDA (Ronald A. Fisher 1936)
• As PCA, the high-level goal is to reduce dimensionality
• Supervised technique (i.e., requires labels)
• Increase computational efficiency
• Reduce overfitting (Curse of dimensionality)
• PCA Objective: find the orthogonal component axes of maximum 

variance in a dataset
• LDA Objective: find the feature subspace that optimizes class 

separability.

39
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Two-Class LDA Problem

• LD2: Good principal component

• LD1: Good LDA component

• Assumptions:
— Data is normally distributed.
— Classes have identical covariance matrices
— Training examples are statistically 

independent of each other

• LDA typically works well even when one 
or more assumptions are violated.

40

Source: Raschka, et. al., “Machine Learning with PyTorch and Scikit-Learn” 
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LDA Algorithm
1. Standardize original feature data 𝑥 (Note: Assumes normality) with 𝑚 

features.
2. For each class, compute the m-dimensional mean vector �̅�
3. Construct the between-class scatter matrix 𝑆+ and within class scatter 

matrix 𝑆,
4. Compute the eigenvectors and corresponding eigenvalues of the matrix 

𝑆,&$𝑆+
5. Sort eigenvalues in decreasing order. This also sorts eigenvectors.
6. Construct projection matrix 𝑊 with the 𝑘 largest eigenvalues (columns). 

𝑊 has shape 𝑚×𝑘.
7. Transform original feature data 𝑥 with 𝑊 to generate 𝑧 

41
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Step 2: 𝑚-dimensional mean vector

• For a dataset with 𝐶 classes and 𝑚 features, we will generate 𝐶 𝑚-
dimensional mean vectors, each with 𝑚 elements.

• General 𝑚-dimensional vector �̅�!

• �̅�! =

𝜇!,B!
𝜇!,B"
⋮

𝜇!,B#

, where 𝜇!,B$ is the average feature 𝑗 value for class 𝑖. 

𝑖 ∈ {1, 2, … , 𝐶}

42
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𝒎-dimensional Mean Vector Example
Sample 

ID 𝒙𝟏 𝒙𝟐 Label

1 1 3 0

2 2 3 0

3 3 2 0

4 4 3 1

5 4 2 1

6 5 3 1

7 2 5 2

8 3 4 2

9 4 5 2

�̅�' =

1 + 2 + 3
3

3 + 3 + 2
3

=
2
8
3
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44

𝒎-dimensional Mean Vector Example
Sample 

ID 𝒙𝟏 𝒙𝟐 Label

1 1 3 0

2 2 3 0

3 3 2 0

4 4 3 1

5 4 2 1

6 5 3 1

7 2 5 2

8 3 4 2

9 4 5 2

�̅�' =

1 + 2 + 3
3

3 + 3 + 2
3

=
2
8
3

�̅�" =

4 + 4 + 5
3

3 + 2 + 3
3

=

13
3
8
3

�̅�! =

2 + 3 + 4
3

5 + 4 + 5
3

=
3
14
3
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Step 3: Construct Scatter Matrices

• Compute within scatter matrix 𝑆J 	of	size	𝑚×𝑚
    𝑆K = ∑!L"/ 𝑆!, where 

    𝑆! = ∑B∈N% 𝑥 − �̅�! 𝑥 − �̅�! O

• This is tracking the within class variance.

45
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Step 3: Construct Scatter Matrices

• Compute within scatter matrix 𝑆J 	of	size	𝑚×𝑚
    𝑆K = ∑!L"/ 𝑆!, where 

    𝑆! = ∑B∈N% 𝑥 − �̅�! 𝑥 − �̅�! O

• Continuing with our example

46

�̅�' =
2
8
3

�̅�" =

13
3
8
3

�̅�! =
3
14
3

𝑆! = ∑"∈$# 𝑥 − �̅�! 𝑥 − �̅�! %

= 1
3 −

2
8
3

1
3 −

2
8
3

%

+ 2
3 −

2
8
3

2
3 −

2
8
3

%

+ 3
2 −

2
8
3

3
2 −

2
8
3

&

= 2 −1
−1 0.6667

Sample 
ID 𝒙𝟏 𝒙𝟐 Label

1 1 3 0

2 2 3 0

3 3 2 0

4 4 3 1

5 4 2 1

6 5 3 1

7 2 5 2

8 3 4 2

9 4 5 2
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Step 3: Construct Scatter Matrices

• Compute within scatter matrix 𝑆J 	of	size	𝑚×𝑚
    𝑆K = ∑!L"/ 𝑆!, where 

    𝑆! = ∑B∈N% 𝑥 − �̅�! 𝑥 − �̅�! O

• Continuing with our example

47

�̅�' =
2
8
3

�̅�" =

13
3
8
3

�̅�! =
3
14
3

𝑆' = ∑"∈$$ 𝑥 − �̅�' 𝑥 − �̅�' %

= 4
3 −

13
3
8
3

4
3 −

13
3
8
3

&

+ 4
2 −

13
3
8
3

4
2 −

13
3
8
3

&

+ 5
3 −

13
3
8
3

5
3 −

13
3
8
3

&

= 0.6667 0.3333
0.3333 0.6667

Sample 
ID 𝒙𝟏 𝒙𝟐 Label

1 1 3 0

2 2 3 0

3 3 2 0

4 4 3 1

5 4 2 1

6 5 3 1

7 2 5 2

8 3 4 2

9 4 5 2
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Step 3: Construct Scatter Matrices

• Compute within scatter matrix 𝑆J 	of	size	𝑚×𝑚
    𝑆K = ∑!L"/ 𝑆!, where 

    𝑆! = ∑B∈N% 𝑥 − �̅�! 𝑥 − �̅�! O

• Continuing with our example

48

�̅�' =
2
8
3

�̅�" =

13
3
8
3

�̅�! =
3
14
3

𝑆( = ∑"∈$% 𝑥 − �̅�( 𝑥 − �̅�( %

= 2
5 −

3
14
3

2
5 −

3
14
3

&

+ 3
4 −

3
14
3

3
4 −

3
14
3

&

+ 4
5 −

3
14
3

4
5 −

3
14
3

&

= 2 0
0 0.6667

Sample 
ID 𝒙𝟏 𝒙𝟐 Label

1 1 3 0

2 2 3 0

3 3 2 0

4 4 3 1

5 4 2 1

6 5 3 1

7 2 5 2

8 3 4 2

9 4 5 2
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Step 3: Construct Scatter Matrices

• Compute within scatter matrix 𝑆J 	of	size	𝑚×𝑚
    𝑆K = ∑!L"/ 𝑆!, where 

    𝑆! = ∑B∈N% 𝑥 − �̅�! 𝑥 − �̅�! O

• Continuing with our example

49

𝑆! =
2 −1
−1 0.6667 , 	 𝑆' =

0.6667 0.3333
0.3333 0.6667 , 	 𝑆( =

2 0
0 0.6667

𝑆( = 𝑆' + 𝑆" + 𝑆! =
4.667 −0.667
−0.667 2.0
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Step 3: Construct Scatter Matrices

• Compute within scatter matrix 𝑆J 	of	size	𝑚×𝑚
    𝑆K = ∑!L"/ 𝑆!, where 

    𝑆! = ∑B∈N% 𝑥 − �̅�! 𝑥 − �̅�! O

• Continuing with our example

50

𝑆! =
2 −1
−1 0.6667 , 	 𝑆' =

0.6667 0.3333
0.3333 0.6667 , 	 𝑆( =

2 0
0 0.6667

𝑆( = 𝑆' + 𝑆" + 𝑆! =
4.667 −0.667
−0.667 2.0

When classes are unbalanced, 
normalize each scatter matrix.

𝑆% =,
&"#

'
𝑆&
n(
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Step 3: Construct Scatter Matrices

• Compute between scatter matrix 𝑆U 	of	size	𝑚×𝑚
   𝑆U = ∑!L"/ 𝑛! �̅�! − �̅� �̅�! − �̅� O, 

where �̅� is the overall mean including examples from all 𝐶 classes.

51

�̅�' =
2
8
3

�̅�" =

13
3
8
3

�̅�! =
3
14
3

Sample 
ID 𝒙𝟏 𝒙𝟐 Label

1 1 3 0

2 2 3 0

3 3 2 0

4 4 3 1

5 4 2 1

6 5 3 1

7 2 5 2

8 3 4 2

9 4 5 2

�̅� = 3.11
10
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LDA Algorithm
1. Standardize original feature data 𝑥 (Note: Assumes normality) with 𝑚 

features.
2. For each class, compute the m-dimensional mean vector �̅�
3. Construct the between-class scatter matrix 𝑆+ and within class scatter 

matrix 𝑆,
4. Compute the eigenvectors and corresponding eigenvalues of the matrix 

𝑺𝑾&𝟏𝑺𝑩
5. Sort eigenvalues in decreasing order. This also sorts eigenvectors.
6. Construct projection matrix 𝑊 with the 𝑘 largest eigenvalues (columns). 

𝑊 has shape 𝑚×𝑘.
7. Transform original feature data 𝑥 with 𝑊 to generate 𝑧 

52
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Step 4: Compute the eigenvectors and 
corresponding eigenvalues of the matrix 𝑺𝑾"𝟏𝑺𝑩

Step 5: Sort eigenvalues and pick 
eigenvectors corresponding to 𝒌-largest 
eigenvalues.
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Step 6: Construct projection matrix 𝑊 

• Construct 𝑊 as we did for PCA

• Expect at most 𝐶 − 1 linear 
discriminants

• Discriminability Ratio is 
equivalent to PCA Explained 
Variance Ratio

54

SKLearn Wine dataset.
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Step 7: Transform original feature data 𝑥 with 
𝑊 to generate 𝑧 

• Same projection step as with PCA, 𝑍 = 𝑋𝑊

55

PCA
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Step 7: Transform original feature data 𝑥 with 
𝑊 to generate 𝑧 

• Same projection step as with PCA, 𝑍 = 𝑋𝑊

56
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Pop Quiz
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Feature Extraction

• Principal Component Analysis (PCA)

• Linear Discriminant Analysis (LDA)
• t-distributed stochastic neighbor embedding (t-SNE)

58
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t-distributed stochastic neighbor embedding 
(t-SNE)

• Popular for data visualization

• Projects m-dimensional space to 2D/3D
• It is a non-linear dimensionality reduction technique also known as 

manifold learning
— Manifold: lower-dimensional topological space embedded in a high-dimensional 

space

• Other sklearn non-linear techniques for dimensionality reduction can 
be found at http://scikit-learn.org/stable/modules/manifold.html 

59

http://scikit-learn.org/stable/modules/manifold.html
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Manifold Learning
http://scikit-learn.org/stable/modules/manifold.html 

http://scikit-learn.org/stable/modules/manifold.html
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t-SNE in SkLearn
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T-SNE
MNIST Digits Dataset
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Dimensionality Reduction

http://cs.stanford.edu/people/karpathy/cnnembed/
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Feature Extraction Review

• Principal Component Analysis (PCA)
— For datasets with categorical features
• Don’t apply PCA to those features
• Multiple Correspondence Analysis (MCA)
• Factor Analysis of Mixed Data (FAMD)

• Linear Discriminant Analysis (LDA)

• t-distributed stochastic neighbor embedding (t-SNE)

64
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Review

• Feature Extraction
— Principal Component Analysis (PCA)
— Linear Discriminant Analysis (LDA)
— t-distributed stochastic neighbor 

embedding (t-SNE)
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Next Lecture

• Shapley Values for XAI

• Unsupervised learning
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Helper Slides
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