COSC 325: Introduction to Machine Learning

Dr. Hector Santos-Villalobos

Lecture 17: Feature Extraction

Class Announcements

Homework

Homework #5 due 11/06 Homework #6 due 11/13

Course Project:

Midterm Report due Tomorrow, Wednesday, 10/30.

Lectures: 11/25 Lecture: No attendance record. Thanksgiving week.

Quizzes:

Weekly quiz as usual.

Exams: Next exam 11/21. Same format.

Review

- Feature Selection
 - Lasso Regularization
 - Sequential Backward Selection
 - Random Forest Feature Selection
 - Permutation Feature Importance
- Intro to Feature Extraction
 - Principal Component Analysis (PCA)
 - Linear Discriminant Analysis (LDA)

Today's Topics

Feature Extraction

Feature Selection

Terminology Check

• Feature selection:

• Feature extraction:

Terminology Check

- Feature selection: keeping the best or most important features for machine algorithm training and execution performance. Besides feature scaling, denoising, and encoding, the original feature intent and nature remain.
- Feature extraction: transforming the original features into a new feature space that retains the essential information about the original dataset.

Feature Extraction

Dimensionality Reduction

- Transforms original data onto a new feature subspace with lower dimensionality.
 - Other names: data summarization or compression.
- Benefits
 - Reduce storage space requirements
 - Increase computational efficiency of the ML algorithm
 - Improve predictive performance
 - Address the curse of dimensionality

Curse of dimensionality

- Coined by Richard Bellman, (Mathematician)
- As the number of features or dimensions grows, the amount of data (# of samples) we need to generalize grows exponentially.
 - High-dimensional data is typically sparse
 - Leads to model overfitting and poor generalization

Feature Extraction

- Principal Component Analysis (PCA)
- Linear Discriminant Analysis (LDA)
- t-distributed stochastic neighbor embedding (t-SNE)

Principal component analysis (PCA)

- Unsupervised linear transformation technique that is widely used across different fields.
- Popular applications:
 - Dimensionality reduction
 - Feature extraction
 - Exploratory data analysis
 - Denoising of timeseries signals
 - Genome data and gene expression analysis

Source: Raschka, et. al., "Machine Learning with PyTorch and Scikit-Learn"

Objective of PCA

- We have a dataset sample $x^{(i)} = \left[x_1^{(i)}, x_2^{(i)}, \dots, x_m^{(i)}\right], x^{(i)} \in \mathbb{R}^m$
- We want to find a projection matrix $W \in \mathbb{R}^{m \times k}$, where $x^{(i)}W = z^{(i)}$
- Resulting in the new vector $z^{(i)} = \left[z_1^{(i)}, z_2^{(i)}, \dots, z_k^{(i)} \right], \qquad z^{(i)} \in \mathbb{R}^k$
- The output vector is a lower dimensional feature space with $k \ll m$

Projections

Unit vector $u \rightarrow u^T u = 1$

Projection $x^{(i)}u$

Variance and Principal Components Illustration

Variance and Principal Components

Variance and Principal Components Illustration

https://www.youtube.com/watch?v=FD4DeN81ODY

Check out this tutorial on PCA!

PCA Algorithm

- 1. Standardize original feature data x (Note: Assumes normality)
- 2. Construct features covariance matrix Σ
- 3. Decompose Σ in eigenvectors and eigenvalues
- 4. Compute Explained Variance
 - 1. Sort eigenvalues in decreasing order
 - 2. Rank eigenvector importance based on eigenvalues
- 5. Construct projection matrix *W*
- 6. Transform original feature data x with W to generate z

Eigendecomposition Review

- Eigendecomposition is the factorization of a square matrix into eigenvalues and eigenvectors
 - Eigenvalues and eigenvectors come in pairs.
 - Eigenvalues: variance magnitude
 - Eigenvector: direction of variance (unchanged under linear transforms) Also known as Principal Components (PC)

 X_2

Source: Raschka, et. al., "Machine Learning with PyTorch and Scikit-Learn"

Eigendecomposition Review

- Eigendecomposition is the factorization of a square matrix into eigenvalues and eigenvectors
 - Eigenvalues and eigenvectors come in pairs.
 - Eigenvalues: variance magnitude
 - Eigenvector: direction of variance (unchanged under linear transforms). Also known as Principal Components (PC)
- The covariance matrix is square and symmetric, $\Sigma = \Sigma^T$
 - Real eigenvalues
 - Orthogonal eigenvectors
- The eigenvector with the largest eigenvalue points in the direction of the largest variance in the data

Source: Raschka, et. al., "Machine Learning with PyTorch and Scikit-Learn"

Step 2: Covariance Construction

• The covariance between two feature vectors x_i and x_l is given by

$$\sigma_{jk} = \frac{1}{n-1} \sum_{i=1}^{n} \left\{ \left(x_j^{(i)} - \mu_j \right) \left(x_l^{(i)} - \mu_l \right) \right\},\,$$

- μ_j and μ_l are the sample means for features *j* and *l*, respectively Note that they are zero after standardization
- Example of a covariance matrix for dataset with three features

$$\Sigma = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix}$$

Step 3: Eigendecomposition

• We want to find the eigenvalues λ and eigenvectors v that satisfy the following equation

 $\Sigma v = \lambda v$

- Computing these values and vectors is beyond this course. For those interested in the theory, please visit the following 3Blue1Brown video tutorial, "Eigenvectors and eigenvalues"
 - Link: <u>https://www.youtube.com/watch?v=PFDu9oVAE-g</u>

Step 3: Eigendecomposition

- We want to find the eigenvalues λ and eigenvectors v that satisfy the following equation

 $\Sigma v = \lambda v$

- Computing these values and vectors is beyond this course. For those interested in the theory, please visit the following 3Blue1Brown video tutorial, "Eigenvectors and eigenvalues"
 - Link: <u>https://www.youtube.com/watch?v=PFDu9oVAE-g</u>
- We will use the Numpy library to compute eigenvalues and eigenvectors eigen_vals, eigen_vectors = np.linalg.eig(cov_mat)

PCA Algorithm

- 1. Standardize original feature data x (Note: Assumes normality)
- **2.** Construct features covariance matrix Σ
- 3. Decompose Σ in eigenvectors and eigenvalues
- 4. Compute Explained Variance
 - 1. Sort eigenvalues in decreasing order
 - 2. Use eigenvalues order to rank eigenvector importance
- 5. Construct projection matrix *W*
- 6. Transform original feature data x with W to generate z

Step 4: Compute Explained Variance

- Select a subset of *k* eigenvectors that contains most of the information (variance) (i.e., the corresponding *k*-largest eigenvalues)
- How do we pick *k*?
 - Hyperparameter tuning
 - Better way: By using Total and Explained Variance
 - Compute the Explained Variance Ratio (EVR) = $\frac{\lambda_j}{\sum_{i=1}^m \lambda_i}$
 - Compute the cumulative sum of the EVR (Use Numpy cumsum function on EVR)
 - Select the number of eigenvectors that reach the desired cumulative value.

Step 4: Select the *k* most important eigenvectors: EVR

Step 4b: Select the *k* most important eigenvectors: Sort eigenvalues/vector

Sort eigenvalues/vectors tuples from high to low eigen_data.sort(key=lambda k: k[0], reverse=True)

Step 5: Construct projection matrix W

- You have k eigenvectors $v_1, v_2, ..., v_k$ where $v_j \in \mathbb{R}^m$
- The matrix W should end up with shape $m \times k$
- Therefore, $W = \begin{bmatrix} v_1 & v_2 & \dots & v_k \end{bmatrix}$
 - You can use np.hstack() function

PCA Algorithm

- 1. Standardize original feature data *x* (Note: Assumes normality)
- 2. Construct features covariance matrix Σ
- 3. Decompose Σ in eigenvectors and eigenvalues
- 4. Compute Explained Variance
 - 1. Sort eigenvalues in decreasing order
 - 2. Use eigenvalues order to rank eigenvector importance
- 5. Construct projection matrix *W*
- 6. Transform original feature data *x* with *W* to generate *z*

Step 6: Transform original feature data *x* with *W* to generate *z*

• Sample transformation:

$$z^{(i)} = x^{(i)}W$$

• Whole dataset transformation:

$$X_{PCA} = XW$$

• Your ML algorithm ingests *X*_{PCA} instead of *X*

SkLearn Wine Raw Features

15 14 19 13 12 12			N.											
6 5 905 3 3 2 1														
3.0 5 2.5 2.0 1.5														
30 stcalinity_of_ash 52 53 54 54 54 55 55 55 50 50 50 50 50 50 50 50 50 50														
160 140 En120 En120 En100 80												X		
4.0 3.5 spund 2.5 1.0 1.5 1.0														
5 4 Spiourane 2 1		- av												target • 0 • 1 • 2
stonadd bionavellinen 0.5 0.4 0.2														
3.5 3.0 2.5 2.0 2.0 1.5 1.0 0.5							R							
12 Atisuatu 6 4 2													a de la compañía	
1.6 1.4 1.2 1.0 0.8 0.6														
se 4.0 3.5 3.0 515p0/082p0 1.5														
1600 1400 1200 900 1000 800 600 400							M.					\$		
	12 14 alcohol	0 2 4 6 malic acid	1 2 3 ash	10 20 30 alcalinity of ash	50 100 150 magnesium	1 2 3 4	0 2 4 6 flavanoirts	0.0 0.2 0.4 0.6 0.8	0 2 4	0 5 10 15	0.5 1.0 1.5 2.0 hue	1 2 3 4 00280000315 of diluted wines	0 500 1000 1500 200	0

SkLearn Wine Dataset PC1 and PC2

from sklearn.decomposition import PCA

pca = PCA(n_components=None)
X_train_pca = pca.fit_transform(X_train_std)
pca.explained_variance_ratio_

Source: Raschka, et. al., "Machine Learning with PyTorch and Scikit-Learn"

Pop Quiz

If we split a dataset X in X_train, X_val, and X_test sets, what set do we use to compute the PCA projection matrix W?

A. The whole dataset X

B. The training set X_train

C. The validation set X_val

D. The test set X_test

E. The training and validation sets X_train and X_val

Can we learn anything about the raw features from the Principal Components?

Loadings

- Principal components are a combination of original features
- How can we assess the contributions of the original features?
 - Compute loadings
 loadings = eigenvectors * np.sqrt(eigenvals)
 - The loadings measures the correlation between the original features and the principal components.

Source: Raschka, et. al., "Machine Learning with PyTorch and Scikit-Learn"

Application Example: DNA2Face

Figure 1: Proposed approach to finding correlations between DNA and facial structure.

Figure 3: Visualization of first 5 PCs from the dataset.

Srinivas, et. al., "DNA2FACE: An approach to correlating 3D facial structure and DNA," IJCB, 2017

Feature Extraction

- Principal Component Analysis (PCA)
- Linear Discriminant Analysis (LDA)
- t-distributed stochastic neighbor embedding (t-SNE)

Linear Discriminant Analysis (LDA)

- Also known as Fisher's LDA (Ronald A. Fisher 1936)
- As PCA, the high-level goal is to reduce dimensionality
- Supervised technique (i.e., requires labels)
- Increase computational efficiency
- Reduce overfitting (Curse of dimensionality)
- PCA Objective: find the orthogonal component axes of maximum variance in a dataset
- LDA Objective: find the feature subspace that optimizes class separability.

Two-Class LDA Problem

- LD2: Good principal component
- LD1: Good LDA component
- Assumptions:
 - Data is normally distributed.
 - Classes have identical covariance matrices
 - Training examples are statistically independent of each other
- LDA typically works well even when one or more assumptions are violated.

Source: Raschka, et. al., "Machine Learning with PyTorch and Scikit-Learn"

LDA Algorithm

- 1. Standardize original feature data *x* (Note: Assumes normality) with *m* features.
- 2. For each class, compute the m-dimensional mean vector \bar{v}
- 3. Construct the between-class scatter matrix S_B and within class scatter matrix S_W
- 4. Compute the eigenvectors and corresponding eigenvalues of the matrix $S_W^{-1}S_B$
- 5. Sort eigenvalues in decreasing order. This also sorts eigenvectors.
- 6. Construct projection matrix W with the k largest eigenvalues (columns). W has shape $m \times k$.
- 7. Transform original feature data x with W to generate z

Step 2: *m*-dimensional mean vector

• For a dataset with *C* classes and *m* features, we will generate *C m*-dimensional mean vectors, each with *m* elements.

• General *m*-dimensional vector \bar{v}_i

•
$$\bar{v}_i = \begin{bmatrix} \mu_{i,x_1} \\ \mu_{i,x_2} \\ \vdots \\ \mu_{i,x_m} \end{bmatrix}$$
, where μ_{i,x_j} is the average feature j value for class i .
 $i \in \{1, 2, ..., C\}$

m-dimensional Mean Vector Example

Sample ID	<i>x</i> ₁	<i>x</i> ₂	Label
1	1	3	0
2	2	3	0
3	3	2	0
4	4	3	1
5	4	2	1
6	5	3	1
7	2	5	2
8	3	4	2
9	4	5	2

$$\bar{v}_0 = \begin{bmatrix} \frac{(1+2+3)}{3} \\ \frac{(3+3+2)}{3} \end{bmatrix} = \begin{bmatrix} 2\\ \frac{8}{3} \end{bmatrix}$$

m-dimensional Mean Vector Example

Sample ID	<i>x</i> ₁	<i>x</i> ₂	Label
1	1	3	0
2	2	3	0
3	3	2	0
4	4	3	1
5	4	2	1
6	5	3	1
7	2	5	2
8	3	4	2
9	4	5	2

$$\bar{v}_0 = \begin{bmatrix} \frac{(1+2+3)}{3} \\ \frac{(3+3+2)}{3} \end{bmatrix} = \begin{bmatrix} 2\\ 8\\ \frac{3}{3} \end{bmatrix}$$

$$\bar{v}_1 = \begin{bmatrix} \frac{(4+4+5)}{3} \\ \frac{(3+2+3)}{3} \end{bmatrix} = \begin{bmatrix} \frac{13}{3} \\ \frac{8}{3} \\ \frac{8}{3} \end{bmatrix}$$

• Compute within scatter matrix S_w of size $m \times m$

$$S_W = \sum_{i=1}^C S_i$$
, where
 $S_i = \sum_{x \in D_i} (x - \bar{v}_i) (x - \bar{v}_i)^T$

• This is tracking the within class variance.

Label

Step 3: Construct Scatter Matrices

• Compute within scatter matrix S_w of size $m \times m$

$$S_W = \sum_{i=1}^C S_i, \text{ where}$$
$$S_i = \sum_{x \in D_i} (x - \bar{v}_i) (x - \bar{v}_i)^T$$

$$\bar{v}_{0} = \begin{bmatrix} 2\\8\\\overline{3} \end{bmatrix} \quad \bar{v}_{1} = \begin{bmatrix} \frac{13}{3}\\\frac{8}{3}\\\frac{8}{3} \end{bmatrix} \quad \bar{v}_{2} = \begin{bmatrix} 3\\14\\\overline{3} \end{bmatrix} \quad \bar{v}_{2} = \begin{bmatrix} 3\\12\\\overline{3} \end{bmatrix} \quad \bar{v}_$$

• Compute within scatter matrix S_w of size $m \times m$

$$S_W = \sum_{i=1}^C S_i$$
, where
 $S_i = \sum_{x \in D_i} (x - \overline{v}_i) (x - \overline{v}_i)^T$

Sample
ID
$$x_1$$
 x_2 Label11302230332044315421653172528342

• Compute within scatter matrix S_w of size $m \times m$

$$S_W = \sum_{i=1}^C S_i, \text{ where}$$
$$S_i = \sum_{x \in D_i} (x - \bar{v}_i) (x - \bar{v}_i)^T$$

Label

$$\bar{v}_0 = \begin{bmatrix} 2\\8\\3 \end{bmatrix} \quad \bar{v}_1 = \begin{bmatrix} \frac{13}{3}\\\frac{8}{3}\\\frac{8}{3} \end{bmatrix} \quad \bar{v}_2 = \begin{bmatrix} 3\\14\\\frac{14}{3} \end{bmatrix}$$

$$S_{2} = \sum_{x \in D_{2}} (x - \bar{v}_{2})(x - \bar{v}_{2})^{T}$$

$$= \left(\begin{bmatrix} 2\\5 \end{bmatrix} - \begin{bmatrix} 3\\14\\3 \end{bmatrix} \right) \left(\begin{bmatrix} 2\\5 \end{bmatrix} - \begin{bmatrix} 3\\14\\3 \end{bmatrix} \right)^{T} + \left(\begin{bmatrix} 3\\4 \end{bmatrix} - \begin{bmatrix} 3\\14\\3 \end{bmatrix} \right) \left(\begin{bmatrix} 3\\4 \end{bmatrix} - \begin{bmatrix} 3\\14\\3 \end{bmatrix} \right)^{T}$$

$$+ \left(\begin{bmatrix} 4\\5 \end{bmatrix} - \begin{bmatrix} 3\\14\\3 \end{bmatrix} \right) \left(\begin{bmatrix} 4\\5 \end{bmatrix} - \begin{bmatrix} 3\\14\\3 \end{bmatrix} \right)^{T} = \begin{bmatrix} 2 & 0\\0 & 0.6667 \end{bmatrix}$$

• Compute within scatter matrix S_w of size $m \times m$

$$S_W = \sum_{i=1}^C S_i$$
, where
 $S_i = \sum_{x \in D_i} (x - \bar{v}_i) (x - \bar{v}_i)^T$

$$S_0 = \begin{bmatrix} 2 & -1 \\ -1 & 0.6667 \end{bmatrix}, \qquad S_1 = \begin{bmatrix} 0.6667 & 0.3333 \\ 0.3333 & 0.6667 \end{bmatrix}, \qquad S_2 = \begin{bmatrix} 2 & 0 \\ 0 & 0.6667 \end{bmatrix}$$

$$S_W = S_0 + S_1 + S_2 = \begin{bmatrix} 4.667 & -0.667 \\ -0.667 & 2.0 \end{bmatrix}$$

• Compute within scatter matrix S_w of size $m \times m$

$$S_W = \sum_{i=1}^C S_i, \text{ where}$$
$$S_i = \sum_{x \in D_i} (x - \bar{v}_i) (x - \bar{v}_i)^T$$

$$S_{0} = \begin{bmatrix} 2 & -1 \\ -1 & 0.6667 \end{bmatrix}, \quad S_{1} = \begin{bmatrix} 0.6667 & 0.3333 \\ 0.3333 & 0.6667 \end{bmatrix}, \quad S_{2} = \begin{bmatrix} 2 & 0 \\ 0 & 0.6667 \end{bmatrix}$$
$$S_{W} = S_{0} + S_{1} + S_{2} = \begin{bmatrix} 4.667 & -0.667 \\ -0.667 & 2.0 \end{bmatrix}$$

• Compute *between* scatter matrix S_B of size $m \times m$

$$S_B = \sum_{i=1}^C n_i (\bar{\nu}_i - \bar{\nu}) (\bar{\nu}_i - \bar{\nu})^T,$$

where \bar{v} is the overall mean including examples from all C classes.

$$\bar{v}_0 = \begin{bmatrix} 2\\ 8\\ \overline{3} \end{bmatrix} \quad \bar{v}_1 = \begin{bmatrix} \frac{13}{3}\\ \frac{3}{8}\\ \frac{3}{3} \end{bmatrix} \quad \bar{v}_2 = \begin{bmatrix} 3\\ \frac{14}{3} \end{bmatrix}$$

Sample ID	<i>x</i> ₁	<i>x</i> ₂	Label
1	1	3	0
2	2	3	0
3	3	2	0
4	4	3	1
5	4	2	1
6	5	3	1
7	2	5	2
8	3	4	2
9	4	5	2

$$\bar{v} = \begin{bmatrix} 3.11 \\ 10 \end{bmatrix}$$

LDA Algorithm

- 1. Standardize original feature data x (Note: Assumes normality) with m features.
- 2. For each class, compute the m-dimensional mean vector \bar{v}
- 3. Construct the between-class scatter matrix S_{R} and within class scatter matrix S_W
- Compute the eigenvectors and corresponding eigenvalues of the matrix $S_W^{-1}S_B$
- to Sort eigenvalues in decreasing order. This also sorts eigenvectors. 5.
- Similar 6. Construct projection matrix W with the k largest eigenvalues (columns). W has shape $m \times k$.
 - Transform original feature data x with W to generate z

Step 4: Compute the eigenvectors and corresponding eigenvalues of the matrix $S_W^{-1}S_B$

eigen_vals, eigen_vecs =\
 np.linalg.eig(np.linalg.inv(S_W).dot(S_B))

Step 5: Sort eigenvalues and pick eigenvectors corresponding to *k*-largest eigenvalues.

Step 6: Construct projection matrix *W*

- Construct W as we did for PCA
- Expect at most C 1 linear discriminants
- Discriminability Ratio is equivalent to PCA Explained Variance Ratio

SKLearn Wine dataset.

Step 7: Transform original feature data *x* with *W* to generate *z*

• Same projection step as with PCA, Z = XW

Step 7: Transform original feature data *x* with *W* to generate *z*

• Same projection step as with PCA, Z = XW

LDA Library

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA

Constructor
lda = LDA(n_components=2)

Fit and Transform
X_train_lda = lda.fit_transform(X_train_std, y_train)

Pop Quiz

X finds eigenvectors that best separate the classes, while Y finds the eigenvectors in the direction of the highest variance in the data independent of the class.

A. X is PCA and Y is LDA

B. X is LDA and Y is PCA

C. None of the above

Feature Extraction

- Principal Component Analysis (PCA)
- Linear Discriminant Analysis (LDA)
- t-distributed stochastic neighbor embedding (t-SNE)

t-distributed stochastic neighbor embedding (t-SNE)

- Popular for data visualization
- Projects m-dimensional space to 2D/3D
- It is a non-linear dimensionality reduction technique also known as manifold learning
 - Manifold: lower-dimensional topological space embedded in a high-dimensional space
- Other sklearn non-linear techniques for dimensionality reduction can be found at <u>http://scikit-learn.org/stable/modules/manifold.html</u>

Manifold Learning

http://scikit-learn.org/stable/modules/manifold.html

t-SNE in SkLearn

from sklearn.manifold import TSNE

```
# Initialize t-SNE with 2 components for 2D visualization
tsne = TSNE(n_components=2, random_state=42)
```

Apply t-SNE to the data
X_tsne = tsne.fit_transform(X)

T-SNE

MNIST Digits Dataset

Figure 5.16: A visualization of how t-SNE embeds the handwritten digits in a 2D feature space

Dimensionality Reduction

Feature Extraction Review

- Principal Component Analysis (PCA)
 - For datasets with categorical features
 - Don't apply PCA to those features
 - Multiple Correspondence Analysis (MCA)
 - Factor Analysis of Mixed Data (FAMD)
- Linear Discriminant Analysis (LDA)
- t-distributed stochastic neighbor embedding (t-SNE)

Review

- Feature Extraction
 - Principal Component Analysis (PCA)
 - Linear Discriminant Analysis (LDA)
 - t-distributed stochastic neighbor embedding (t-SNE)

Next Lecture

- Shapley Values for XAI
- Unsupervised learning

Helper Slides