
https://ttpoll.com/p/297609

COSC 325: Introduction to Machine
Learning

Dr. Hector Santos-Villalobos

https://ttpoll.com/p/297609

Lecture 16:
Feature

Selection and
Extraction

https://ttpoll.com/p/297609

Class Announcements
Homework
Homework #5 due 11/06
Homework #6 due 11/13

Course Project:
Midterm Report due 10/27

Lectures:
Tuesday 10/22, In-Person

Quizzes:
Weekly quiz as usual.

Exams:
Next exam 11/21. Same format.

3

https://ttpoll.com/p/297609

Review

• Hyperparameter tuning
— Grid Search
— Random Search -> 3+ parameters
— Scale search space (i.e., logscale)

• Model evaluation
— Measuring performance

• Holdout Method
• Repeated Holdout (with Bootstrapping)
• LOOB, OOBB

• K-Fold Cross-Validation
• LOOCV (n-Fold) (Small), 10-Fold (Avg), 5-Fold (Large)

— Model evaluation
• Accuracy metrics (Mean, Variance)
• Confidence intervals

— Sampling
• Stratified sampling: ensure data splits class distributions

match the original dataset class distributions.
• Bootstrapping (w/ replacement, 34% not sampled)

4

https://ttpoll.com/p/297609

Today’s Topics

Feature Selection

5

Feature Extraction

https://ttpoll.com/p/297609

Terminology Check

• Exhaustive search: The algorithm evaluates all possible combinations
and guarantees an optimal solution. Computational expensive.

• Greedy search: makes locally optimal choices at each stage of a
combinatorial search problem and generally yields a suboptimal
solution. Computational efficient.

6

https://ttpoll.com/p/297609

Terminology Check

• Feature selection: keeping the best or most important features for
machine algorithm training and execution performance. Besides
feature scaling, denoising, and encoding, the original feature intent
and nature remain.

• Feature extraction: transforming the original features into a new
feature space that retains the essential information about the original
dataset.

7

https://ttpoll.com/p/297609

Feature
Selection

8

https://ttpoll.com/p/297609

Feature Selection

• Lasso Regularization
• Sequential Backward Selection
• Random Forest Feature Selection

• Permutation Feature Importance

9

https://ttpoll.com/p/297609

Lasso Regularization

• Easily integrable in gradient-based ML methods via regularization term
in the cost function.

min
!,#

𝐽(𝑤) = −
1
𝑛
,
$%&

'

ℒ .𝑦 $, 𝑦 $ + 𝜆𝐿𝑎𝑠𝑠𝑜 𝑤

• Optimizes when weights are zero, resulting in sparsity

• Excellent choice for high-dimensional datasets

10

Ridge (L2): 𝑤 !
! = "

#
∑$%"# 𝑤$!Lasso (L1): 𝑤 " = "

#
∑$%"# 𝑤$

https://ttpoll.com/p/297609

11

Lasso and Feature Sparsity

Source: Raschka, et. al., “Machine Learning with PyTorch and Scikit-Learn”.

https://ttpoll.com/p/297609

12

Regularization Coefficient vs Weight Sparsity

Source: Raschka, et. al., “Machine Learning with PyTorch and Scikit-Learn”

Wine Dataset Logistic Regression Coefficients

min
!,#

𝐽(𝑤) = −
1
𝑛1
$%&

'

ℒ 3𝑦 $, 𝑦 $ + 𝝀𝐿𝑎𝑠𝑠𝑜 𝑤

𝝀 ∝
𝟏
𝑪

https://ttpoll.com/p/297609

Feature Selection

• Lasso Regularization

• Sequential Backward Selection
• Random Forest Feature Selection

• Permutation Feature Importance

13

https://ttpoll.com/p/297609

Sequential Backward
Selection (SBS)

• Classic heuristic technique to
programmatically reduce the
dimensionality of the original model
parameters (i.e., features) space with
minimal decay in model
performance.
— For overfitting models, SBS can improve

performance.

• At each 𝑘 trials, we remove the least
important feature.

14

Image Source: Aregbesola, et. al., “Sequential backward feature selection for optimizing permanent
strain model of unbound aggregates,” Case Studies in Construction Materials, Volume 19, 2023.

https://ttpoll.com/p/297609

Other techniques

• Sequential Feature Selection (Forward): conceptually similar to
SBS. Starts with no features, then adds one feature at a time.
(Homework 5)

• Backward Elimination: eliminates features based on the feature
weights.
• Tree-based methods: selects features based by importance and

statistical tests.

15

https://ttpoll.com/p/297609

Feature Selection

• Lasso Regularization

• Sequential Backward Selection
• Random Forest Feature Selection

• Permutation Feature Importance

16

https://ttpoll.com/p/297609

Feature Reduction with Random Forests

• Random Forest
— Fixed tree architecture
— Randomly assign features to each internal node
— Ensemble of hundreds of random trees

17

𝑥!
IG: 0.3

𝑥"
IG: 0.1

𝑥#
IG: 0.6

https://ttpoll.com/p/297609

Feature Reduction with Random Forests

• Random Forest
— Fixed tree architecture
— Randomly assign features to each internal node
— Ensemble of hundreds of random trees

• Feature importance
— Average impurity decrease (i.e., information gain)

18

𝑥!
IG: 0.3

𝑥"
IG: 0.1

𝑥#
IG: 0.6

𝑥#
IG: 0.55

𝑥!
IG: 0.2

𝑥$
IG: 0.3

𝑥%
IG: 0.65

𝑥!
IG: 0.35

𝑥#
IG: 0.5

https://ttpoll.com/p/297609

Feature Reduction with Random Forests

• Random Forest
— Fixed tree architecture
— Randomly assign features to each internal node
— Ensemble of hundreds of random trees

• Feature importance
— Average impurity decrease (i.e., information gain)

19

𝑥!
IG: 0.3

𝑥"
IG: 0.1

𝑥#
IG: 0.6

𝑥#
IG: 0.55

𝑥!
IG: 0.25

𝑥$
IG: 0.3

𝑥%
IG: 0.65

𝑥!
IG: 0.35

𝑥#
IG: 0.5

Average information gain:
• 𝐼𝐺!! = 0.55
• 𝐼𝐺!" = 0.30

https://ttpoll.com/p/297609

RF Feature Important Example

• Careful with high-
dimensional data
— Too many unique values

• Computed with training data
— Optimistic metric

• Inverted importance for
highly correlated features.

20

SKLearn RandomForestClassifier
importances = forest.feature_importances_ Source: Raschka, et. al., “Machine Learning with PyTorch and Scikit-Learn”

https://ttpoll.com/p/297609

Feature Selection

• Lasso Regularization

• Sequential Backward Selection
• Random Forest Feature Selection

• Permutation Feature Importance

21

https://ttpoll.com/p/297609

Permutation Feature Importance

• Operation: Shuffle feature 𝑥/ and
observe impact on model
performance
• Works with tabular data
• Measured for training or validation

set
• Useful for non-linear, black-box

estimators
• Issues with highly correlated

features

22 Source: https://scikit-learn.org/stable/modules/permutation_importance.html#permutation-importance

https://ttpoll.com/p/297609

Permutation Feature Importance

• Operation: Shuffle feature 𝑥/ and
observe impact on model
performance
• Works with tabular data
• Measured for training or validation

set
• Useful for non-linear, black-box

estimators
• Issues with highly correlated

features

23 Source: https://scikit-learn.org/stable/modules/permutation_importance.html#permutation-importance

https://ttpoll.com/p/297609

Feature Selection Review

• Lasso Regularization

• Sequential Backward Selection
• Random Forest Feature Selection

• Permutation Feature Importance

24

https://ttpoll.com/p/297609

25

Pop Quiz

https://ttpoll.com/p/297609

Feature
Extraction

26

https://ttpoll.com/p/297609

Dimensionality Reduction

• Transforms original data onto a new feature subspace with lower
dimensionality.
— Other names: data summarization or compression.

• Benefits
— Reduce storage space requirements
— Increase computational efficiency of the ML algorithm
— Improve predictive performance
• Address the curse of dimensionality

27

https://ttpoll.com/p/297609

Curse of dimensionality

• High-dimensional data is typically sparse

• This leads to model overfitting and poor generalization

28

https://ttpoll.com/p/297609

Feature Extraction

• Principal Component Analysis (PCA)
• Linear Discriminant Analysis (LDA)
• t-distributed stochastic neighbor embedding (t-SNE)

29

https://ttpoll.com/p/297609

Principal component analysis (PCA)

• Unsupervised linear transformation
technique that is widely used across
different fields.

• Popular applications:
— Dimensionality reduction
— Feature extraction
— Exploratory data analysis
— Denoising of timeseries signals
— Genome data and gene expression analysis

30

Source: Raschka, et. al., “Machine Learning with PyTorch and Scikit-Learn”

https://ttpoll.com/p/297609

Objective of PCA

• We have a dataset sample 𝑥 $ = 𝑥&
$, 𝑥0

$, … , 𝑥1
$, 𝑥 $ ∈ ℝ1

• We want to find a projection matrix 𝑊 ∈ ℝ1×3, where
𝑥 $ 𝑊 = 𝑧 $

• Resulting in the new vector
𝑧 $ = 𝑧&

$, 𝑧0
$, … , 𝑧3

$, 	 𝑧 $ ∈ ℝ3

• The output vector is a lower dimensional feature space with 𝑘 ≪ 𝑚

31

https://ttpoll.com/p/297609

PCA Algorithm

1. Standardize original feature data 𝑥 (Note: Assumes normality)

2. Construct features covariance matrix Σ
3. Decompose Σ in eigenvectors and eigenvalues

4. Select the 𝑘 most important eigenvectors
1. Sort eigenvalues in decreasing order
2. Use eigenvalues order to rank eigenvector importance

5. Construct projection matrix 𝑊
6. Transform original feature data 𝑥 with 𝑊 to generate 𝑧

32

https://ttpoll.com/p/297609

Eigendecomposition Review

• Eigendecomposition is the factorization of
a square matrix into eigenvalues and
eigenvectors
— Eigenvalues and eigenvectors come in pairs.
• Eigenvalues: variance magnitude
• Eigenvector: direction of variance (unchanged under

linear transforms)

33

Source: Raschka, et. al., “Machine Learning with PyTorch and Scikit-Learn”

https://ttpoll.com/p/297609

Eigendecomposition Review
• Eigendecomposition is the factorization of a

square matrix into eigenvalues and eigenvectors
— Eigenvalues and eigenvectors come in pairs.

• Eigenvalues: variance magnitude
• Eigenvector: direction of variance (unchanged under linear

transforms). Also known as Principal Components (PC)

• The covariance matrix is square and symmetric,
Σ = Σ?
• Such a matrix produces

— Real eigenvalues
— Orthogonal eigenvectors

• The eigenvector with the largest eigenvalue points
in the direction of the largest variance in the data

34

Source: Raschka, et. al., “Machine Learning with PyTorch and Scikit-Learn”

https://ttpoll.com/p/297609

Step 2: Covariance Construction

• The covariance between two feature vectors 𝑥! and 𝑥" is given by

 𝜎!# =
$

%&$
∑'($% 𝑥!

' − 𝜇! 𝑥"
' − 𝜇" ,

• 𝜇! and 𝜇" are the sample means for features 𝑗 and 𝑙, respectively
— Note that they are zero after standardization

• Example of a covariance matrix for dataset with three features

Σ =
𝜎$$ 𝜎$) 𝜎$)
𝜎)$ 𝜎)) 𝜎)*
𝜎*$ 𝜎*) 𝜎**

35

https://ttpoll.com/p/297609

Step 3: Eigendecomposition

• We want to find the eigenvalues 𝜆 and eigenvectors 𝑣 that satisfy the following
equation

Σ𝑣 = 𝜆𝑣

• Computing these values and vectors is beyond this course. For those interested in
the theory, please visit the following 3Blue1Brown video tutorial, “Eigenvectors
and eigenvalues”
— Link: https://www.youtube.com/watch?v=PFDu9oVAE-g

36

https://www.youtube.com/watch?v=PFDu9oVAE-g

https://ttpoll.com/p/297609

Step 3: Eigendecomposition
• We want to find the eigenvalues 𝜆 and eigenvectors 𝑣 that satisfy the following

equation

Σ𝑣 = 𝜆𝑣

• Computing these values and vectors is beyond this course. For those interested in
the theory, please visit the following 3Blue1Brown video tutorial, “Eigenvectors
and eigenvalues”
— Link: https://www.youtube.com/watch?v=PFDu9oVAE-g

• We will use the Numpy library to compute eigenvalues and eigenvectors
eigen_vals,	eigen_vectors	=	np.linalg.eig(cov_mat)

37

https://www.youtube.com/watch?v=PFDu9oVAE-g

https://ttpoll.com/p/297609

PCA Algorithm

1. Standardize original feature data 𝑥 (Note: Assumes normality)

2. Construct features covariance matrix Σ
3. Decompose Σ in eigenvectors and eigenvalues

4. Select the 𝒌 most important eigenvectors
1. Sort eigenvalues in decreasing order
2. Use eigenvalues order to rank eigenvector importance

5. Construct projection matrix 𝑊
6. Transform original feature data 𝑥 with 𝑊 to generate 𝑧

38

https://ttpoll.com/p/297609

Step 4: Select the 𝒌 most important
eigenvectors

• Select a subset of 𝑘 eigenvectors that contains most of the
information (variance) (i.e., the corresponding 𝑘-largest eigenvalues)

• How do we pick 𝑘?
— Hyperparameter tuning
— Better way: By using Total and Explained Variance
• Compute the Explained Variance Ratio (EVR) =

"#
∑#$!
% "#

• Compute the cumulative sum of the EVR (Use Numpy cumsum function on EVR)
• Select the number of eigenvectors that reach the desired cumulative value.

39

https://ttpoll.com/p/297609

40

Step 4: Select the 𝒌 most important
eigenvectors: EVR

SKLearn Wine dataset.

Source: Raschka, et. al., “Machine Learning with PyTorch and Scikit-Learn”

EVR =
𝜆(

∑(%&) 𝜆(

https://ttpoll.com/p/297609

41

Step 4: Select the 𝒌 most important
eigenvectors: Sort eigenvalues/vector

https://ttpoll.com/p/297609

Step 5: Construct projection matrix 𝑾
• You have 𝑘 eigenvectors 𝑣&, 𝑣0, … , 𝑣3 where 𝑣/ ∈ ℝ1

• The matrix 𝑊 should end up with shape 𝑚×𝑘

• Therefore, 𝑊 = 𝑣& 𝑣0 … 𝑣3
— You can use np.hstack() function

42

https://ttpoll.com/p/297609

PCA Algorithm

1. Standardize original feature data 𝑥 (Note: Assumes normality)

2. Construct features covariance matrix Σ
3. Decompose Σ in eigenvectors and eigenvalues

4. Select the 𝑘 most important eigenvectors
1. Sort eigenvalues in decreasing order
2. Use eigenvalues order to rank eigenvector importance

5. Construct projection matrix 𝑊
6. Transform original feature data 𝒙 with 𝑾 to generate 𝒛

43

https://ttpoll.com/p/297609

Step 6: Transform original feature data 𝒙 with
𝑾 to generate 𝒛

• Sample transformation:
𝑧 $ = 𝑥 $ 𝑊

• Whole dataset transformation:
𝑋456 = 𝑋𝑊

• Your ML algorithm ingests 𝑋456 instead of 𝑋

44

https://ttpoll.com/p/297609

45

SkLearn Wine Raw
Features

https://ttpoll.com/p/297609

46

SkLearn Wine Dataset PC1 and PC2

Source: Raschka, et. al., “Machine Learning with PyTorch and Scikit-Learn”

https://ttpoll.com/p/297609

47

Pop Quiz

https://ttpoll.com/p/297609

Can we learn anything about the raw features
from the Principal Components?

48

https://ttpoll.com/p/297609

Loadings

• Principal components are a
combination of original features

• How can we assess the contributions
of the original features?
— Compute loadings

𝑙𝑜𝑎𝑑𝑖𝑛𝑔𝑠 = 𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟𝑠 ∗ 𝑛𝑝. 𝑠𝑞𝑟𝑡 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑠
— The loadings measures the correlation

between the original features and the
principal components.

49

Source: Raschka, et. al., “Machine Learning with PyTorch and Scikit-Learn”

https://ttpoll.com/p/297609

Feature Extraction

• Principal Component Analysis (PCA)

• Linear Discriminant Analysis (LDA)
• t-distributed stochastic neighbor embedding (t-SNE)

50

https://ttpoll.com/p/297609

Linear Discriminant Analysis (LDA)

• Also known as Fisher’s LDA (Ronald A. Fisher 1936)
• As PCA, the high-level goal is to reduce dimensionality
• Supervised technique (i.e., requires labels)
• Increase computational efficiency
• Reduce overfitting (Curse of dimensionality)
• PCA Objective: find the orthogonal component axes of maximum

variance in a dataset
• LDA Objective: find the feature subspace that optimizes class

separability.

51

https://ttpoll.com/p/297609

Two-Class LDA Problem

• LD2: Good principal component

• LD1: Good LDA component

• Assumptions:
— Data is normally distributed.
— Classes have identical covariance matrices
— Training examples are statistically

independent of each other

• LDA typically works well even when one
or more assumptions are violated.

52

Source: Raschka, et. al., “Machine Learning with PyTorch and Scikit-Learn”

https://ttpoll.com/p/297609

LDA Algorithm
1. Standardize original feature data 𝑥 (Note: Assumes normality) with 𝑚

features.
2. For each class, compute the m-dimensional mean vector 𝑣̅
3. Construct the between-class scatter matrix 𝑆+ and within class scatter

matrix 𝑆,
4. Compute the eigenvectors and corresponding eigenvalues of the matrix

𝑆,&$𝑆+
5. Sort eigenvalues in decreasing order. This also sorts eigenvectors.
6. Construct projection matrix 𝑊 with the 𝑘 largest eigenvalues (columns).

𝑊 has shape 𝑚×𝑘.
7. Transform original feature data 𝑥 with 𝑊 to generate 𝑧

53

https://ttpoll.com/p/297609

Step 2: 𝑚-dimensional mean vector

• For a dataset with 𝐶 classes and 𝑚 features, we will generate 𝐶 𝑚-
dimensional mean vectors, each with 𝑚 elements.

• General 𝑚-dimensional vector

• 𝑣̅$ =

𝜇$,G!
𝜇$,G"
⋮

𝜇$,G#

, where 𝜇$,G$ is the average feature 𝑗 value for class 𝑖.

𝑖 ∈ {1, 2, … , 𝐶}

54

https://ttpoll.com/p/297609

55

𝒎-dimensional Mean Vector Example
Sample

ID 𝒙𝟏 𝒙𝟐 Label

1 1 3 0

2 2 3 0

3 3 2 0

4 4 3 1

5 4 2 1

6 5 3 1

7 2 5 2

8 3 4 2

9 4 5 2

𝑣̅$ =

1 + 2 + 3
3

3 + 3 + 2
3

=
2
8
3

https://ttpoll.com/p/297609

56

𝒎-dimensional Mean Vector Example
Sample

ID 𝒙𝟏 𝒙𝟐 Label

1 1 3 0

2 2 3 0

3 3 2 0

4 4 3 1

5 4 2 1

6 5 3 1

7 2 5 2

8 3 4 2

9 4 5 2

𝑣̅$ =

1 + 2 + 3
3

3 + 3 + 2
3

=
2
8
3

𝑣̅% =

4 + 4 + 5
3

3 + 2 + 3
3

=

13
3
8
3

𝑣̅& =

2 + 3 + 4
3

5 + 4 + 5
3

=
3
14
3

https://ttpoll.com/p/297609

Step 3: Construct Scatter Matrices

• Compute within scatter matrix 𝑆! 	of	size	𝑚×𝑚
 𝑆N = ∑$%&5 𝑆$, where

 𝑆$ = ∑G∈P% 𝑥 − 𝑣̅$ 𝑥 − 𝑣̅$ Q

• This is tracking the within class variance.

57

https://ttpoll.com/p/297609

Step 3: Construct Scatter Matrices

• Compute within scatter matrix 𝑆! 	of	size	𝑚×𝑚
 𝑆N = ∑$%&5 𝑆$, where

 𝑆$ = ∑G∈P% 𝑥 − 𝑣̅$ 𝑥 − 𝑣̅$ Q

• This is tracking the within class variance.
• Continuing with our example

58

𝑣̅$ =
2
8
3

𝑣̅% =

13
3
8
3

𝑣̅& =
3
14
3

𝑆! = ∑"∈$(𝑥 − 𝑣̅! 𝑥 − 𝑣̅! %

= 1
3 −

2
8
3

1
3 −

2
8
3

&

+ 2
3 −

2
8
3

2
3 −

2
8
3

&

+ 3
2 −

2
8
3

3
2 −

2
8
3

&

= 2 −1
−1 0.6667

Sample
ID 𝒙𝟏 𝒙𝟐 Label

1 1 3 0

2 2 3 0

3 3 2 0

4 4 3 1

5 4 2 1

6 5 3 1

7 2 5 2

8 3 4 2

9 4 5 2

https://ttpoll.com/p/297609

Step 3: Construct Scatter Matrices

• Compute within scatter matrix 𝑆! 	of	size	𝑚×𝑚
 𝑆N = ∑$%&5 𝑆$, where

 𝑆$ = ∑G∈P% 𝑥 − 𝑣̅$ 𝑥 − 𝑣̅$ Q

• Continuing with our example

59

𝑣̅$ =
2
8
3

𝑣̅% =

13
3
8
3

𝑣̅& =
3
14
3

𝑆' = ∑"∈$) 𝑥 − 𝑣̅' 𝑥 − 𝑣̅' %

= 4
3 −

13
3
8
3

4
3 −

13
3
8
3

&

+ 4
2 −

13
3
8
3

4
2 −

13
3
8
3

&

+ 5
3 −

13
3
8
3

5
3 −

13
3
8
3

&

= 0.6667 0.3333
0.3333 0.6667

Sample
ID 𝒙𝟏 𝒙𝟐 Label

1 1 3 0

2 2 3 0

3 3 2 0

4 4 3 1

5 4 2 1

6 5 3 1

7 2 5 2

8 3 4 2

9 4 5 2

https://ttpoll.com/p/297609

Step 3: Construct Scatter Matrices

• Compute within scatter matrix 𝑆! 	of	size	𝑚×𝑚
 𝑆N = ∑$%&5 𝑆$, where

 𝑆$ = ∑G∈P% 𝑥 − 𝑣̅$ 𝑥 − 𝑣̅$ Q

• Continuing with our example

60

𝑣̅$ =
2
8
3

𝑣̅% =

13
3
8
3

𝑣̅& =
3
14
3

𝑆(= ∑"∈$* 𝑥 − 𝑣̅(𝑥 − 𝑣̅(%

= 2
5 −

3
14
3

2
5 −

3
14
3

&

+ 3
4 −

3
14
3

3
4 −

3
14
3

&

+ 4
5 −

3
14
3

4
5 −

3
14
3

&

= 2 0
0 0.6667

Sample
ID 𝒙𝟏 𝒙𝟐 Label

1 1 3 0

2 2 3 0

3 3 2 0

4 4 3 1

5 4 2 1

6 5 3 1

7 2 5 2

8 3 4 2

9 4 5 2

https://ttpoll.com/p/297609

Step 3: Construct Scatter Matrices

• Compute within scatter matrix 𝑆! 	of	size	𝑚×𝑚
 𝑆N = ∑$%&5 𝑆$, where

 𝑆$ = ∑G∈P% 𝑥 − 𝑣̅$ 𝑥 − 𝑣̅$ Q

• Continuing with our example

61

𝑆! =
2 −1
−1 0.6667 , 	 𝑆' =

0.6667 0.3333
0.3333 0.6667 , 	 𝑆(=

2 0
0 0.6667

𝑆' = 𝑆$ + 𝑆% + 𝑆& =
4.667 −0.667
−0.667 2.0

https://ttpoll.com/p/297609

Step 3: Construct Scatter Matrices

• Compute within scatter matrix 𝑆! 	of	size	𝑚×𝑚
 𝑆N = ∑$%&5 𝑆$, where

 𝑆$ = ∑G∈P% 𝑥 − 𝑣̅$ 𝑥 − 𝑣̅$ Q

• Continuing with our example

62

𝑆! =
2 −1
−1 0.6667 , 	 𝑆' =

0.6667 0.3333
0.3333 0.6667 , 	 𝑆(=

2 0
0 0.6667

𝑆' = 𝑆$ + 𝑆% + 𝑆& =
4.667 −0.667
−0.667 2.0

When classes are unbalanced,
normalize each scatter matrix.

𝑆* =1
$%&

+
𝑆$
n,

https://ttpoll.com/p/297609

Step 3: Construct Scatter Matrices

• Compute between scatter matrix 𝑆V 	of	size	𝑚×𝑚
 𝑆V = ∑$%&5 𝑛$ 𝑣̅$ − 𝑣̅ 𝑣̅$ − 𝑣̅ Q,

where 𝑣̅ is the overall mean including examples from all 𝐶 classes.

63

𝑣̅$ =
2
8
3

𝑣̅% =

13
3
8
3

𝑣̅& =
3
14
3

Sample
ID 𝒙𝟏 𝒙𝟐 Label

1 1 3 0

2 2 3 0

3 3 2 0

4 4 3 1

5 4 2 1

6 5 3 1

7 2 5 2

8 3 4 2

9 4 5 2

𝑣̅ = 3.11
10

https://ttpoll.com/p/297609

LDA Algorithm
1. Standardize original feature data 𝑥 (Note: Assumes normality) with 𝑚

features.
2. For each class, compute the m-dimensional mean vector 𝑣̅
3. Construct the between-class scatter matrix 𝑆+ and within class scatter

matrix 𝑆,
4. Compute the eigenvectors and corresponding eigenvalues of the matrix

𝑺𝑾&𝟏𝑺𝑩
5. Sort eigenvalues in decreasing order. This also sorts eigenvectors.
6. Construct projection matrix 𝑊 with the 𝑘 largest eigenvalues (columns).

𝑊 has shape 𝑚×𝑘.
7. Transform original feature data 𝑥 with 𝑊 to generate 𝑧

64

S
im

ila
r

to
 P

C
A

https://ttpoll.com/p/297609

65

Step 4: Compute the eigenvectors and
corresponding eigenvalues of the matrix 𝑺𝑾"𝟏𝑺𝑩

Step 5: Sort eigenvalues and pick
eigenvectors corresponding to 𝒌-largest
eigenvalues.

https://ttpoll.com/p/297609

Step 6: Construct projection matrix 𝑊

• Construct 𝑊 as we did for PCA

• Expect at most 𝐶 − 1 linear
discriminants

• Discriminability Ratio is
equivalent to PCA Explained
Variance Ratio

66

SKLearn Wine dataset.

https://ttpoll.com/p/297609

Step 7: Transform original feature data 𝑥 with
𝑊 to generate 𝑧

• Same projection step as with PCA, 𝑍 = 𝑋𝑊

67

PCA

https://ttpoll.com/p/297609

Step 7: Transform original feature data 𝑥 with
𝑊 to generate 𝑧

• Same projection step as with PCA, 𝑍 = 𝑋𝑊

68

https://ttpoll.com/p/297609

69

Pop Quiz

https://ttpoll.com/p/297609

Feature Extraction

• Principal Component Analysis (PCA)

• Linear Discriminant Analysis (LDA)
• t-distributed stochastic neighbor embedding (t-SNE)

70

https://ttpoll.com/p/297609

t-distributed stochastic neighbor embedding
(t-SNE)

• Popular for data visualization

• Projects m-dimensional space to 2D/3D
• It is a non-linear dimensionality reduction technique also known as

manifold learning
— Manifold: lower-dimensional topological space embedded in a high-dimensional

space

• Other sklearn non-linear techniques for dimensionality reduction can
be found at http://scikit-learn.org/stable/modules/manifold.html

71

http://scikit-learn.org/stable/modules/manifold.html

https://ttpoll.com/p/297609

72

T-SNE
MNIST Digits Dataset

https://ttpoll.com/p/297609

73

Dimensionality Reduction

http://cs.stanford.edu/people/karpathy/cnnembed/

https://ttpoll.com/p/297609

Feature Extraction Review

• Principal Component Analysis (PCA)

• Linear Discriminant Analysis (LDA)
• t-distributed stochastic neighbor embedding (t-SNE)

74

https://ttpoll.com/p/297609

Review

• Feature Selection
— Lasso Regularization
— Sequential Backward Selection
— Random Forest Feature Selection
— Permutation Feature Importance

• Feature Extraction
— Principal Component Analysis (PCA)
— Linear Discriminant Analysis (LDA)
— t-distributed stochastic neighbor

embedding (t-SNE)

75

https://ttpoll.com/p/297609

Next Lecture

• Shapley Values for XAI

• Unsupervised learning

76

https://ttpoll.com/p/297609

Helper Slides

77

https://ttpoll.com/p/297609

