COSC 325: Introduction to Machine Learning

Dr. Hector Santos-Villalobos

Lecture 13: Ensemble Methods

Class Announcements

Homework/Quizzes:

No homework or quiz this week.

Course Project:

Teaming issues. Please contact me.

Lectures:

No attendance record today due to the Engineering Expo

Exams:

Exam #1: This Thursday, 10/03

- Online
- Window 11 am to 1 pm
- 75 mins
- SDS accommodations set in Canvas.

Review

- Decision Trees
 - Impurity
 - Entropy, Gini
 - Information Gain
 - Equivalent to Mutual Information
 - Shortcomings
 - Costly diagonal boundaries
 - Overfitting
 - Costly management of overfitting
 - Strengths
 - High capacity
 - Explainable
 - Simplicity and efficiency

Today's Topics

Ensemble Methods

Pop Quiz

How many Lego blocks are in the jar?

Wisdom of the Crowd

- The collective opinion of a diverse independent group of individuals rather than a single expert
- One explanation: There is noise associated with each individual judgment, and taking the average over many responses will go some way toward canceling the effect of this noise

Ensemble Methods Motivation

- Joint model predictions tend to have lower bias and variance
- Ensemble techniques are the most widely used ML methods following DL techniques
 - More computationally efficient than DL techniques

Ensemble Methods Motivation

- Joint model predictions tend to have lower bias and variance
- Ensemble techniques are the most widely used ML methods following DL techniques
 - More computationally efficient than DL techniques

Example Project:

https://www.kaggle.com/competitions/isic-2024-challenge/overview

Ensemble methods still rock!

Ensemble Methods

- Ensemble methods are learning models that combine the opinions of multiple learners
- When you're doing this, the individual learners can often end up being a lot simpler and still get really good performance
- Ensembles are also inherently parallel, which makes them more efficient at training and test time if you have access to multiple processors.

Are these models different?

Moving to Ensembles

- If your learning algorithm is deterministic, then the algorithm will produce the same model given the same dataset
- To really get the most out of your learning algorithm, you need diversity/variability!
- To do this, you can either change the *learning algorithm* or change the *data set*

Different Models

- Let's do a binary classification problem: {Upgrade Car, Keep Car}
- Instead of learning a single classifier, you might learn a bunch of different classifiers:
 - Decision tree
 - Logistic Regression
 - KNN
 - SVM
 - Multiple neural networks with different architectures

Generating Ensemble

Generating Ensemble

Generating Ensemble

What could be the output of the ensemble?

Majority Voting (mode)

$$\hat{y} = mode\{h_1(x), \dots h_T(x)\}$$

$$mode(Z) = \{z_i \in Z \mid Frequency(z_i) \geq Frequency(z_j), \forall j\}$$

Majority Voting (mode)

$$\hat{y} = mode\{h_1(x), \dots h_T(x)\}$$

$$mode(Z) = \{z_i \in Z \mid Frequency(z_i) \geq Frequency(z_j), \forall j\}$$

Majority Voting (mode)

For
$$\hat{y} \in \{-1,1\}$$
, and $h_t(x) \in \{-1,1\}$:

$$\hat{y} = H(x) = sign(\sum_{t=1}^{T} h_t(x))$$

$$\hat{y} = mode\{h_1(x), \dots h_T(x)\}$$

$$mode(Z) = \{z_i \in Z \mid Frequency(z_i) \geq Frequency(z_j), \forall j\}$$

Advantages of Ensembles

 Main advantage: Unlikely that all classifiers will make the same mistake

Advantages of Ensembles

 Main advantage: Unlikely that all classifiers will make the same mistake

 As long as a minority of classifiers makes every error, you will achieve optimal classification!

Advantages of Ensembles

- Main advantage: Unlikely that all classifiers will make the same mistake
- Useful when individual models are high variance

Pop Quiz

What types of errors are ensemble methods most effective at addressing? Select all that apply.

- **A.** Variance
- **B.** Bias
- C. Irreducible Error

Ensembles and Types of Error

- Unfortunately, the *inductive biases* of different algorithms are highly correlated.
 - Example 1: Assume non-linear or linear relationship between y and x.
 - Example 2: Assume small changes in feature values leads to small changes in the model output.
 - Example 3: Application of regularization, which leads to lower capacity models.
- Irreducible errors are still present
 - Examples: missing features, noise in measurements, etc.

- Classification
 - Majority voting (mode)

- Binary: $\{1,1,0,1,0,1\} \rightarrow 1$
- Categorical: $\{A, B, A, C, C, A\} \rightarrow A$

- Classification
 - Majority voting (mode)
- Regression
 - Mean, median

Binary: $\{1,1,0,1,0,1\} \rightarrow 1$

Categorical: $\{A, B, A, C, C, A\} \rightarrow A$

Regression: {5.43,5.44,5.38}

- Classification
 - Majority voting (mode)
- Regression
 - Mean, median

Binary: $\{1,1,0,1,0,1\} \rightarrow 1$

Categorical: $\{A, B, A, C, C, A\} \rightarrow A$

Regression: $\{5.43,5.44,5.38\} \stackrel{mean}{\Longrightarrow} 5.42$ $\stackrel{median}{\Longrightarrow} 5.43$

- Classification
 - Majority voting (mode)
- Regression
 - Mean, median

Binary: $\{1,1,0,1,0,1\} \rightarrow 1$

Categorical: $\{A, B, A, C, C, A\} \rightarrow A$

Regression: $\{5.43,5.44,5.38\} \xrightarrow{mean} 5.42$ $\xrightarrow{median} 5.43$

- Ranking
 - Rank Aggregation (Similar to how College football teams are ranked)
 - Relevance scores, then take the average relevance score for ranking.

Other Ensembles Strategies

Other Ensembles Strategies

$$Data = \bigcup_{i=1}^{n} Data_i$$

Other Ensembles Strategies

$$Data = \bigcup_{i=1}^{n} Data_i$$

Other Ensembles Strategies

$$Data = \bigcup_{i=1}^{n} Data_{i}$$

What could be a problem with this approach?

Other Ensembles Strategies

$$Data = \bigcup_{i=1}^{n} Data_i$$

Splitting data into multiple smaller datasets may result in high variance models with poor ensemble performance.

9 Samples

9 Samples

Bootstrap Resampling

- Statistical technique
- Observation
 - The data set we're given D is drawn i.i.d. (independently and identically distributed) from an unknown distribution f(X, y)
 - If we draw a new dataset \widetilde{D} by random sampling from D with **replacement**, then \widetilde{D} is also a sample from f(X, y)

Bagging Algorithm

- Given: dataset D with n samples
- We create M bootstrapped sets $\widetilde{D}_1,\widetilde{D}_2,\widetilde{D}_3,...,\widetilde{D}_M$
- Each bootstrapped set contains n training examples drawn randomly from D with replacement
- Then, we can train M classifiers $h_{\widetilde{D}_1}$, $h_{\widetilde{D}_2}$, ..., $h_{\widetilde{D}_M}$
- After training the ensemble of *M* models, proceed with testing as before.

- The bootstrapped data sets will be similar but not too similar.
- If *n* is large, the number of examples that are not present in any particular bootstrapped sample is relatively large.

The probability that the first training example is NOT selected is

$$P_{Sel} = \left(1 - \frac{1}{n}\right)$$

The probability that it's not selected at all is

$$P_{All} = P_{Sel}^n = \left(1 - \frac{1}{n}\right)^n$$

• As
$$n \to \infty$$
, $P_{All} = \frac{1}{e} \approx 0.3679$

The probability that the first training example is NOT selected is

$$P_{Sel} = \left(1 - \frac{1}{n}\right)$$

The probability that it's not selected at all is

$$P_{All} = P_{Sel}^n = \left(1 - \frac{1}{n}\right)^n$$

• As
$$n \to \infty$$
, $P_{All} = \frac{1}{e} \approx 0.367\overline{9}$

For
$$n = 1,000$$
:

For
$$n = 1,000$$
:
$$P_{all} = \left(1 - \frac{1}{1000}\right)^{1000} = 0.36769\overline{5}$$

The probability that the first training example is NOT selected is

$$P_{Sel} = \left(1 - \frac{1}{n}\right)$$

The probability that it's not selected at all is

$$P_{All} = P_{Sel}^n = \left(1 - \frac{1}{n}\right)^n$$

• As
$$n \to \infty$$
, $P_{All} = \frac{1}{e} \approx 0.3679$

On average only 63% of the original training examples will be represented in any given bootstrapped set.

Bagging and Overfitting

 Bagging tends to reduce variance, so it provides an alternative to regularization.

• Even if learned classifiers $h_{\widetilde{D}_1}, h_{\widetilde{D}_2}, \dots, h_{\widetilde{D}_M}$ are individually overfit, they're likely to overfit to different things.

• Through voting, we can overcome a significant portion of the overfitting.

Pop Quiz

True or False. When using the bagging approach to sample a dataset D (consisting of n samples) to form subsets D1 and D2, D will end up with zero samples, and the number of samples for D1 and D2 will be half the original number of samples in D (n/2).

A. True

B. False

Boosting

Strong and Weak Learning Algorithms

- A strong learning algorithm £ given
 - A desired error rate ϵ ,
 - A failure probability δ , and
 - Access to enough labeled examples from distribution \mathcal{D}
- Then, with high probability (at least 1δ), \mathcal{L} learns a classifier h that has error at most ϵ .

Strong and Weak Learning Algorithms

Building a strong learning algorithm might be difficult!

Strong and Weak Learning Algorithms

We instead build a *weak* learning algorithm \mathcal{W} that only has to achieve an error rate *slightly better than random*.

Boosting

- Tries to turn a weak learning $\mathcal W$ algorithm into a strong learning algorithm $\mathcal L$ by an ensemble of multiple weak models.
- AdaBoost: Adaptive Boosting Algorithm
 - It doesn't require a large number of hyperparameters
 - It runs in polynomial time

AdaBoost: Intuition

- Suppose you're studying for an exam by using past exams
- You take the past exams and grade yourself
- Which questions do you focus your studying on?

AdaBoost: Intuition

- Suppose you're studying for an exam by using past exams
- You take the past exams and grade yourself
- Most likely you...
 - Pay less attention to the questions that you got right
 - Study more the questions that you got wrong
 - You *retake* the exam and *repeat* this process until mastery

AdaBoost: Intuition

- Suppose you're studying for an exam by using past exams
- You take the past exams and grade yourself
- Is it possible that you get stronger for your previously weak topics and weaker for your previously strong topics?

Source: https://www.geeksforgeeks.org/implementing-the-adaboost-algorithm-from-scratch/

Algorithm 1 AdaBoost Algorithm

- 1: **Input:** Training dataset $(X, y) \in D$ with n samples and $y \in \{-1, 1\}$, The number of \mathcal{W} models to train T.
- 2: **Initialize:** Weights $w_0 = \left[\frac{1}{n}, \frac{1}{n}, ..., \frac{1}{n}\right]^T$ with same shape as y.
- 3: for t = 1 to T do
- 4: Train a weak learner $\hat{y} = h_t(X, w_{t-1})$ using samples weights w_{t-1} .
- 5: Compute the weak learner's weighted error: $\varepsilon_t = (w_{t-1})^T I(y \neq \hat{y})$
- 6: Compute the weight of the weak learner: $\alpha_t = \frac{1}{2} \log \left((1 \varepsilon_t) / \varepsilon_t \right)$
- 7: Update training sample weights: $w_t = w_{t-1} \circ \exp(-\alpha_t y \circ \hat{y})$
- 8: Normalize the weights: $w_t = w_t / \left(\sum_{i=1}^n w_t^{(i)}\right)$
- 9: end for
- 10: **Return:** $H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$

Source: https://www.geeksforgeeks.org/implementing-the-adaboost-algorithm-from-scratch/

Algorithm 1

1: **Input:** Tra

For example, scaling the loss:

 $\{-1,1\}$, The

number of

$$J(\theta, w) = \sum_{i=1}^{\infty} w^{(i)} \mathcal{L}(y^{(i)}, \hat{y}^{(i)})$$

_

3: **for** t = 1 to T **do**

2: Initialize:

- 4: Train a weak learner $\hat{y} = h_t(X, w_{t-1})$ using samples weights w_{t-1} .
- 5: Compute the weak learner's weighted error: $\varepsilon_t = (w_{t-1})^T I(y \neq \hat{y})$
- 6: Compute the weight of the weak learner: $\alpha_t = \frac{1}{2} \log \left(\left(1 \varepsilon_t \right) / \varepsilon_t \right)$
- 7: Update training sample weights: $w_t = w_{t-1} \circ \exp(-\alpha_t y \circ \hat{y})$
- 8: Normalize the weights: $w_t = w_t / \left(\sum_{i=1}^n w_t^{(i)}\right)$
- 9: end for
- 10: **Return:** $H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$

Source: https://www.geeksforgeeks.org/implementing-the-adaboost-algorithm-from-scratch/

Algorithm 1 AdaBoost Algorithm

- 1: **Input:** Training dataset $(X, y) \in D$ with n samples and $y \in \{-1, 1\}$, The number of \mathcal{W} models to train T.
- 2: Initialize: Weights $w_0 = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$ wit $\varepsilon_t \in [0,1]$ 3: for t = 1 to T α typically [-1,1]
- 4: Train a we using mples weights w_{t-1}
- 5: C s weight error: $\varepsilon_t = (w_{t-1})^T I(y \neq \hat{y})$
- 6: $C \alpha > 0 \text{ for } \varepsilon_t < 0.5$ weak learner: $\alpha_t = \frac{1}{2} \log \left(\left(1 \varepsilon_t \right) / \varepsilon_t \right)$
- 7: Update training sample weights: $w_t = w_{t-1} \circ \exp(-\alpha_t y \circ \hat{y})$
- 8: Normalize the weights: $w_t = w_t / \left(\sum_{i=1}^n w_t^{(i)}\right)$
- 9: end for
- 10: **Return:** $H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$

$$y\circ \hat{y}\in \{1,-1\}$$

- When h_t is a weak learner
 - $-\varepsilon_t < 0.5 \Rightarrow \alpha > 0$
 - Then, when $y = \hat{y}$, $w_t < w_{t-1}$
 - − Otherwise, $w_t \ge w_{t-1}$

Algorithm 1 AdaBoost Algorithm

- 1: **Input:** Training dataset $(X, y) \in D$ with n samples and $y \in \{-1, 1\}$, The number of \mathcal{W} models to train T.
- 2: Initialize: Weights $w_0 = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$ wit $\varepsilon_t \in [0,1]$ 3: for t = 1 to T α typically [-1,1]
- 4: Train a we prove that w_{t-1} using proper weights w_{t-1}
- 5: C s weight error: $\varepsilon_t = (w_{t-1})^T I(y \neq \hat{y})$
- 6: $C \alpha > 0 \text{ for } \varepsilon_t < 0.5$ weak learner: $\alpha_t = \frac{1}{2} \log \left(\left(1 \varepsilon_t \right) / \varepsilon_t \right)$
- 7: Update training sample weights: $w_t = w_{t-1} \circ \exp(-\alpha_t y \circ \hat{y})$
- 8: Normalize the weights: $w_t = w_t / \left(\sum_{i=1}^n w_t^{(i)}\right)$
- 9: end for
- 10: **Return:** $H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$

 $y\circ \hat{y}\in\{1,-1\}$

- When h_t is a weak learner
 - $-\varepsilon_t < 0.5 \Rightarrow \alpha > 0$
 - Then, when $y = \hat{y}$, $w_t < w_{t-1}$
 - − Otherwise, $w_t \ge w_{t-1}$
- When h_t is not a weak learner; we don't trust the model (flip decisions)
 - $-\varepsilon_t \ge 0.5 \Rightarrow \alpha \le 0$
 - Then, when $y = \hat{y}$, $w_t \ge w_{t-1}$
 - Otherwise, $w_t < w_{t-1}$

Algorithm 1 AdaBoost Algorithm

- 1: **Input:** Training dataset $(X, y) \in D$ with n samples and $y \in \{-1, 1\}$, The number of \mathcal{W} models to train T.
- 2: Initialize: Weights $w_0 = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$ wit $\varepsilon_t \in [0,1]$ 3: for t = 1 to T α typically [-1,1]
- 5: C s weight error: $\varepsilon_t = (w_{t-1})^T I(y \neq \hat{y})$
- 6: $C \alpha > 0 \text{ for } \varepsilon_t < 0.5$ weak learner: $\alpha_t = \frac{1}{2} \log \left(\left(1 \varepsilon_t \right) / \varepsilon_t \right)$
- 7: Update training sample weights: $w_t = w_{t-1} \circ \exp(-\alpha_t y \circ \hat{y})$
- 8: Normalize the weights: $w_t = w_t / \left(\sum_{i=1}^n w_t^{(i)}\right)$
- 9: end for
- 10: **Return:** $H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$

 $y\circ \hat{y}\in\{1,-1\}$

- When h_t is a weak learner
 - $-\varepsilon_t < 0.5 \Rightarrow \alpha > 0$
 - Then, when $y = \hat{y}$, $w_t < w_{t-1}$
 - − Otherwise, $w_t \ge w_{t-1}$
- When h_t is not a weak learner; we don't trust the model (flip decisions)
 - $-\varepsilon_t \ge 0.5 \Rightarrow \alpha \le 0$
 - Then, when $y = \hat{y}$, $w_t \ge w_{t-1}$
 - Otherwise, $w_t < w_{t-1}$

Algorithm 1 AdaBoost Algorithm

- 1: **Input:** Training dataset $(X, y) \in D$ with n samples and $y \in \{-1, 1\}$, The number of \mathcal{W} models to train T.
- 2: Initialize: Weights $w_0 = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$ wit $\varepsilon_t \in [0,1]$ 3: for t = 1 to T α typically [-1,1] using weights w_{t-1} .
- 5: C sweign terror: $\varepsilon_t = (w_{t-1})^T I(y \neq \hat{y})$
- 6: $C \alpha > 0 \text{ for } \varepsilon_t < 0.5$ weak learner: $\alpha_t = \frac{1}{2} \log \left(\left(1 \varepsilon_t \right) / \varepsilon_t \right)$
- 7: Update training sample weights: $w_t = w_{t-1} \circ \exp(-\alpha_t y \circ \hat{y})$
- 8: Normalize the weights: $w_t = w_t / \left(\sum_{i=1}^n w_t^{(i)}\right)$
- 9: end for
- 10: **Return:** $H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$

$$y\circ \hat{y}\in\{1,-1\}$$

AdaBoost Example

- Assume $h_1(x) = c$, where c is a constant.
- If the total weight for the positive examples exceeds that of the negative examples,
 - then, $h_1(x) = +1 \forall x$
 - Otherwise, $h_1(x) = -1 \, \forall x$
- Suppose that in our original training set, there are 80 positive and 20 negative samples.
- The original cumulative weight distribution is

 - Positive samples $80 * \frac{1}{100} = 0.8$ Negative samples $20 * \frac{1}{100} = 0.2$

AdaBoost Example (Continue)

- Then, $h_1(x) = +1 \ \forall x$ $-\varepsilon_1 = 0.2, \quad \alpha_1 = \frac{1}{2} \log(4)$
- Weights for each correctly predicted sample is

$$\frac{1}{100} \exp\left(-\frac{1}{2}\log 4\right) = \frac{1}{200}$$

• Weights for each *incorrectly* predicted sample is

$$\frac{1}{100} \exp\left(\frac{1}{2}\log 4\right) = \frac{1}{50}$$

Algorithm 1 AdaBoost Algorithm

- 1: **Input:** Training dataset $(X, y) \in D$ with n samples and $y \in \{-1, 1\}$, The number of \mathcal{W} models to train T.
- 2: **Initialize:** Weights $w_0 = \left[\frac{1}{n}, \frac{1}{n}, ..., \frac{1}{n}\right]^T$ with same shape as y.
- 3: **for** t = 1 to T **do**
- 4: Train a weak learner $\hat{y} = h_t(X, w_{t-1})$ using samples weights w_{t-1} .
- 5: Compute the weak learner's weighted error: $\varepsilon_t = \left(w_{t-1}\right)^T I(y \neq \hat{y})$
- 6: Compute the weight of the weak learner: $\alpha_t = \frac{1}{2} \log \left(\left(1 \varepsilon_t \right) / \varepsilon_t \right)$
- 7: Update training sample weights: $w_t = w_{t-1} \circ \exp(-\alpha_t y \circ \hat{y})$
- 8: Normalize the weights: $w_t = w_t / \left(\sum_{i=1}^n w_t^{(i)}\right)$
- 9: end for
- 10: **Return:** $H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$

AdaBoost Example (Continue)

- The cumulative weight sum is $80 * \frac{1}{200} + 20 * \frac{1}{50} = \frac{4}{5}$
- Weights after normalization
 - Positive samples: $\frac{1}{160}$ Negative samples: $\frac{1}{40}$
- The new cumulative weight distribution is
 - Positive samples $80 * \frac{1}{160} = \frac{1}{2}$ Negative samples $20 * \frac{1}{40} = \frac{1}{2}$

Algorithm 1 AdaBoost Algorithm

- 1: **Input:** Training dataset $(X, y) \in D$ with n samples and $y \in \{-1, 1\}$, The number of \mathcal{W} models to train T.
- 2: **Initialize:** Weights $w_0 = \left[\frac{1}{n}, \frac{1}{n}, ..., \frac{1}{n}\right]^T$ with same shape as y.
- 3: for t = 1 to T do
- Train a weak learner $\hat{y} = h_t(X, w_{t-1})$ using samples weights w_{t-1} .
- Compute the weak learner's weighted error: $\varepsilon_t = (w_{t-1})^T I(y \neq \hat{y})$
- Compute the weight of the weak learner: $\alpha_t = \frac{1}{2} \log \left(\left(1 \varepsilon_t \right) / \varepsilon_t \right)$ 6:
- Update training sample weights: $w_t = w_{t-1} \circ \exp(-\alpha_t y \circ \hat{y})$ 7:
- Normalize the weights: $w_t = w_t / \left(\sum_{i=1}^n w_t^{(i)}\right)$
- 9: end for
- 10: **Return:** $H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$

AdaBoost Example (Continue)

Data is now evenly weighted.

• The next weak learner $h_2(x)$ needs to do something more interesting than a constant output to achieve an error rate below 0.5.

Algorithm 1 AdaBoost Algorithm

- 1: **Input:** Training dataset $(X, y) \in D$ with n samples and $y \in \{-1, 1\}$, The number of W models to train T.
- 2: **Initialize:** Weights $w_0 = \left[\frac{1}{n}, \frac{1}{n}, ..., \frac{1}{n}\right]^T$ with same shape as y.
- 3: for t = 1 to T do
- 4: Train a weak learner $\hat{y} = h_t(X, w_{t-1})$ using samples weights w_{t-1} .
- 5: Compute the weak learner's weighted error: $\varepsilon_t = (w_{t-1})^T I(y \neq \hat{y})$
- 6: Compute the weight of the weak learner: $\alpha_t = \frac{1}{2} \log \left(\left(1 \varepsilon_t \right) / \varepsilon_t \right)$
- 7: Update training sample weights: $w_t = w_{t-1} \circ \exp(-\alpha_t y \circ \hat{y})$
- 8: Normalize the weights: $w_t = w_t / \left(\sum_{i=1}^n w_t^{(i)}\right)$
- 9: end for
- 10: **Return:** $H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$

Decision Stumps

- Shallow decision trees are a popular weak learner
- A very popular weak learner is a decision stump
 - This is a decision tree that can only ask one question
- A decision stump is pretty useless on its own, but very effective when combined with boosting

$$h(x) = s\left(I(x_{f_k} > t)\right)$$
, where $s \in \{-1,1\}$, x_{f_k} is feature k

Uniform weight across samples

Weight the Entropy Impurity scores.

$$I_H(D,t) = -\sum_{i=1}^{c} p(D=i|t) \log_2(p(D=i|t))$$

Weighted classification error

$$\varepsilon_t = \left(\sum_{i \in D} w^{(i)} I(y^{(i)} \neq \hat{y}^{(i)})\right) / \sum_{i \in D} w^{(i)}$$

Random Forests

Random Ensembles

- If we wanted to use an ensemble of decision trees, it might be expensive to train each tree individually.
- It's super fast for decision stumps but prohibitively expensive for deep trees.
- The expensive part is picking the tree structure.
- If we had a tree structure already, it would be cheap to fill in the leaf nodes (the predictions of the tree) using the training data.

Random Forests

- In random forests, we use trees with fixed structures and random features.
- Parallel generation of T full binary trees.
- Features randomly assigned to internal nodes (typically with replacement)
- Leaves filled by training data D_t

Algorithm 1 Random Forest Algorithm

- 1: **Input:** Training data $(X, y) \in D$, number of trees T, number of features to sample m
- 2: **Initialize:** Set of decision trees $F = \{\}$
- 3: **for** t = 1 to T **do**
- 4: Draw a bootstrap sample D_t from the training data D
- 5: Randomly select m features from the total feature set
- 6: Train a decision tree h_t on D_t , using only the selected m features
- 7: Add the trained tree h_t to the forest F
- 8: end for
- 9: **Output:** Ensemble of trees $F = \{h_1, h_2, \dots, h_T\}$
- 10:
- 11: Prediction for new input x:
- 12: For classification:

$$\hat{y} = \text{majority_vote} (\{h_t(x) : t = 1, \dots, T\})$$

13: For regression:

$$\hat{y} = \frac{1}{T} \sum_{t=1}^{T} h_t(x)$$

Random Forests

- They work remarkably well
- Best practice to remove irrelevant features
- Why do they work?
 - Some nodes will make random choices.
 - While others will make good choices.
 - It is more likely for most nodes to be weak learners due to training data
 - Performance increases with the number of trees.

Pop Quiz

True or False. Random Forests fill a pre-determined tree structure's internal nodes with randomly selected features.

A. True

B. False

Review

- Ensemble of techniques
- Ensemble of datasets
 - Different datasets -> Bagging
- They Reduce variance
- Perform well as long as only a few of the models make the same mistakes
- Boosting
 - Ensemble of weak learners
 - Easier to design
 - Computational efficient
- Random Forests

Next Lecture

Model Evaluation

Helper Slides

