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Class Announcements
Homework:

Homework #3 DD 09/29

Start early. Don’t expect TA support 

during weekends.

Course Project:

Teaming issues.

Lectures:

On October 1st, no attendance record 

due to the Engineering Expo

Exams:

Exam #1: Thursday, 10/03

• Online

• Window 11 am to 1 pm

• 75 mins

3

Course grade distribution change: 

• Exams: 45% 35%

• Homework: 20% 30%
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Review

• Capacity

• Overfitting/Underfitting

• Bias-Variance Tradeoff

• Loss = Bias2 + Variance + Irreducible 
Error

• Regularization techniques

4
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Today’s Topics

Decision Trees

5

Regularization
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Regularization

6
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L2 Regularization (Ridge)

Logistic Regression

min
𝑤,𝑏

𝐽(𝑤) = −
1

𝑛


𝑖=1

𝑛

ℒ ො𝑦(𝑖), 𝑦(𝑖) +
𝜆

2𝑚
𝑤 2

2

Regularization

Removes sqrt of L2 

norm.

𝑤 2
2 = 

𝑗=1

𝑚

𝑤𝑗
2 = 𝑤𝑇𝑤

Parameter to control 

how much to regularize.

L2 Regularization: Popular approach.
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L2 Regularization (Ridge)

Logistic Regression

min
𝑤,𝑏

𝐽(𝑤) = −
1

𝑛


𝑖=1

𝑛

ℒ ො𝑦(𝑖), 𝑦(𝑖) +
𝜆

2𝑚
𝑤 2

2

𝑤 2
2 = 

𝑗=1

𝑚

𝑤𝑗
2 = 𝑤𝑇𝑤L2 Regularization: 

Heavily penalizes 

larger weights
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L2 Regularization (Ridge)

Logistic Regression

min
𝑤,𝑏

𝐽(𝑤) = −
1

𝑛


𝑖=1

𝑛

ℒ ො𝑦(𝑖), 𝑦(𝑖) +
𝜆

2𝑚
𝑤 2

2

𝑤 2
2 = 

𝑗=1

𝑚

𝑤𝑗
2 = 𝑤𝑇𝑤L2 Regularization: 

Note: 
𝜕

𝜆

2𝑚
𝑤 2

2

𝜕𝑤𝑖
=

𝜕
𝜆

2𝑚
σ𝑗=1

𝑚 𝑤𝑗
2

𝜕𝑤𝑖
=

𝜆

𝑚
𝑤𝑖



https://ttpoll.com/p/643115

10

Gradient Descent with Regularization

𝑑𝑊 =
𝑑𝐽

𝑑𝑊
= 𝑑𝑊 =

1

𝑛
𝐴 𝑑𝑍 +

𝜆

𝑚
𝑊

𝑊 ≔ 𝑊 − 𝛼𝑑𝑊 = 𝑊 − 𝛼
1

𝑛
𝐴 𝑑𝑍 +

𝜆

𝑚
𝑊

We are penalizing weight 

magnitude.

= 1 −
𝛼𝜆

𝑚
𝑊 − 𝛼

1

𝑛
𝐴 𝑑𝑍

Also called “Weight 

Decay” for this reason.
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Intuition on Regularization

High Bias Just Right High Variance

min
𝑊

𝐽(𝑊) = −
1

𝑛
σ𝑖=1

𝑛 ℒ ො𝑦(𝑖), 𝑦(𝑖)  +
𝜆

2𝑚
𝑊 2

2



https://ttpoll.com/p/643115

12

Intuition on Regularization

High Bias Just Right High Variance

min
𝑊

𝐽(𝑊) = −
1

𝑛
σ𝑖=1

𝑛 ℒ ො𝑦(𝑖), 𝑦(𝑖)  +
𝜆

2𝑚
𝑊 2

2

If 𝜆 ≫ 0, then 𝑊 → 0 

Capacity
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Intuition on Regularization

High Bias Just Right High Variance

min
𝑊

𝐽(𝑊) = −
1

𝑛
σ𝑖=1

𝑛 ℒ ො𝑦(𝑖), 𝑦(𝑖)  +
𝜆

2𝑚
𝑊 2

2

If 𝜆 ≫ 0, then 𝑊 → 0 
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Overfitting

Cost

Iterations

Validation

Training

Low Bias-High Variance

Cost

Iterations

Validation

Training

Higher Bias-Low Variance

min
𝑊

𝐽(𝑊) = −
1

𝑛
σ𝑖=1

𝑛 ℒ ො𝑦(𝑖), 𝑦(𝑖)  +
𝜆

2𝑚
𝑊 2

2

If 𝜆 > 0, then 𝑊 → 0 
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Popular Regularization/Penalty Terms

Technique Formula Type Effect Common use cases

Ridge (L2)
𝜆

2


𝑖=1

𝑚

𝑤𝑗
2 = 𝑤𝑇𝑤

Penalizes squared 

weights

Rewards smaller 

weights, smoother 

transitions.

Linear/Logistic 

Regression, Neural 

Networks

Lasso (L1) 𝜆 

𝑗=1

𝑚

𝑤𝑗
Penalizes absolute 

weights

Rewards sparsity 

(feature space 

reduction)

High-dimensional 

data

ElasticNet
𝜆1

2
𝑤 2

2 + 𝜆2 𝑤 1
Combines Ridge and 

Lasso

Balances sparsity 

(L1) and smoothness 

(L2)

High-dimensional 

data with correlated 

features

Early Stopping N/A
Stops training after 

specified cost event.

Prevents overfitting 

by using an earlier 

checkpoint.

Neural Networks
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Popular Regularization/Penalty Terms

Technique Formula Type Effect Common use cases

Ridge (L2)
𝜆

2


𝑖=1

𝑚

𝑤𝑗
2 = 𝑤𝑇𝑤

Penalizes squared 

weights

Rewards smaller 

weights, smoother 

transitions.

Linear/Logistic 

Regression, Neural 

Networks

Lasso (L1) 𝜆 

𝑗=1

𝑚

𝑤𝑗
Penalizes absolute 

weights

Rewards sparsity 

(feature space 

reduction)

High-dimensional 

data

ElasticNet
𝜆1

2
𝑤 2

2 + 𝜆2 𝑤 1
Combines Ridge and 

Lasso

Balances sparsity 

(L1) and smoothness 

(L2)

High-dimensional 

data with correlated 

features

Early Stopping N/A
Stops training after 

specified cost event.

Prevents overfitting 

by using an earlier 

checkpoint.

Neural Networks

Early stop
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Pop Quiz
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Pop Quiz
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Decision Trees

19
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Decision Trees

• Iterative top-down creation 
of hypothesis (Classifier)

• Hierarchy of decisions
— We ask questions to split the 

dataset.

Stay home or go to the movies

Binary
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Decision Trees

• Iterative top-down creation 
of hypothesis (Classifier)

• Hierarchy of decisions
— We ask questions to split the 

dataset.

Stay home or go to the movies

Categorical

We convert these to binary 

decisions for computing 

efficiency.
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Decision Trees

• Iterative top-down creation 
of hypothesis (Classifier)

• Hierarchy of decisions
— We ask questions to split the 

dataset.

• Highly explainable

Source: Dr. Raschka, Machine Learning Book

Stay home or go to the movies

Depth=3
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Top-Down Induction of Decision Trees

• If you could only ask one question, what question would you ask?

• Natural greedy approach to growing a decision tree in a top-down way

• Algorithm:
— Pick “best” attribute to split at the root based on training data

— Recurse on children that are “impure” (e.g., have both yes and no)

23 Slide Credit: Dr. Schumman
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Top-Down Induction of Decision Trees 

• Natural greedy approaches where we grow the tree from the root to 
the leaves by repeatedly replacing an existing leaf with an internal 
node 

24 Slide Credit: Dr. Schumman
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Data Example (Jedi/Sith)

Clothing Human Voice Pitch Affiliation

Brown Yes Medium Jedi

Black No Medium Jedi

Black Yes High Sith

Brown No Low Jedi

Black No Low Sith

Brown Yes Low Sith

Brown Yes Medium Jedi

Black Yes Low Sith

25

𝑋 𝑦
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Team Exercise

• Create teams of three (Ideally neighbors)

• Assume Voice feature categories: {Low, Medium/High}

• You have 3-5 minutes to design this data's “best” tree.

26
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Pop Quiz
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Data Example (Jedi/Sith)

Clothing Human Voice Pitch Affiliation

Brown Yes Medium/High Jedi

Black No Medium/High Jedi

Black Yes Medium/High Sith

Brown No Low Jedi

Black No Low Sith

Brown Yes Low Sith

Brown Yes Medium/High Jedi

Black Yes Low Sith

28

𝑋 𝑦
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Data Example (Jedi/Sith): Clothing

Clothing 𝒙𝟏 Human 𝒙𝟐 Voice Pitch 𝒙𝟑 Affiliation 𝒚

Brown Yes Medium Jedi

Black No Medium Jedi

Black Yes High Sith

Brown No Low Jedi

Black No Low Sith

Brown Yes Low Sith

Brown Yes Medium Jedi

Black Yes Low Sith

29

𝑋 𝑦

Brown Clothing:

• Jedis – 3

• Siths - 1

Jedi
Black Clothing:

• Jedis – 1

• Siths - 3

Sith
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Data Example (Jedi/Sith): Human

Clothing 𝒙𝟏 Human 𝒙𝟐 Voice Pitch 𝒙𝟑 Affiliation 𝒚

Brown Yes Medium Jedi

Black No Medium Jedi

Black Yes High Sith

Brown No Low Jedi

Black No Low Sith

Brown Yes Low Sith

Brown Yes Medium Jedi

Black Yes Low Sith

30

𝑋 𝑦

Yes Human:

• Jedis – 2

• Siths - 3

No Human:

• Jedis – 2

• Siths - 1

Sith
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Data Example (Jedi/Sith): Voice

Clothing 𝒙𝟏 Human 𝒙𝟐 Voice Pitch 𝒙𝟑 Affiliation 𝒚

Brown Yes Medium Jedi

Black No Medium Jedi

Black Yes High Sith

Brown No Low Jedi

Black No Low Sith

Brown Yes Low Sith

Brown Yes Medium Jedi

Black Yes Low Sith

31

𝑋 𝑦

Mid-High Voice:

• Jedis – 3

• Siths - 1

Low Voice:

• Jedis – 1

• Siths - 3
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Is 

clothing 

brown?

Is 

human?

Low 

Voice?

No Yes No Yes Yes No

Classes: 3/1Classes:  1/3 Classes: 2/3Classes:  2/1 Classes: 3/1Classes:  1/3

Totals: Jedis=5, Siths=4

No single feature enables sample classification on its own.
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Data Example (Jedi/Sith): Clothing

Clothing 𝒙𝟏 Human 𝒙𝟐 Voice Pitch 𝒙𝟑 Affiliation 𝒚

Brown No Low Jedi

Brown Yes Low Sith

Brown Yes Medium Jedi

Brown Yes Medium Jedi

Black No Low Sith

Black No Medium Jedi

Black Yes Low Sith

Black Yes High Sith

33

𝑋 𝑦
Brown Clothing:

• Jedis – 3

• Siths - 1

Black Clothing:

• Jedis – 1

• Siths - 3
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Is 

clothing 

brown?
No Yes

Classes: 3/1Classes:  1/3

Is 

human?

No Yes

Classes:  ?Classes:  ?

Is 

human?

No Yes

Classes:  ?Classes:  ?

Totals: Jedis=4, Siths=4
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Data Example (Jedi/Sith): Clothing

Clothing 𝒙𝟏 Human 𝒙𝟐 Voice Pitch 𝒙𝟑 Affiliation 𝒚

Brown No Low Jedi

Brown Yes Low Sith

Brown Yes Medium Jedi

Brown Yes Medium Jedi

Black No Low Sith

Black No Medium Jedi

Black Yes Low Sith

Black Yes High Sith

35

𝑋 𝑦
Brown-Human:

• Jedis – 2

• Siths - 1

Brown No-Human:

• Jedis – 1

• Siths - 0
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Is 

clothing 

brown?
No Yes

Classes: 3/1Classes:  1/3

Is 

human?

No Yes

Classes: ?Classes:  ?

Is 

human?

No Yes

Classes: 2/1Classes:  1/0

Pure Leaf Node

Totals: Jedis=4, Siths=4
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Data Example (Jedi/Sith): Clothing

Clothing 𝒙𝟏 Human 𝒙𝟐 Voice Pitch 𝒙𝟑 Affiliation 𝒚

Brown No Low Jedi

Brown Yes Low Sith

Brown Yes Medium Jedi

Brown Yes Medium Jedi

Black No Low Sith

Black No Medium Jedi

Black Yes Low Sith

Black Yes High Sith

37

𝑋 𝑦
Black-Human:

• Jedis – 0

• Siths - 2

Black No-Human:

• Jedis – 1

• Siths - 1
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Is 

clothing 

brown?
No Yes

Classes: 3/1Classes:  1/3

Is 

human?

No Yes

Classes: 0/2Classes:  1/1

Is 

human?

No Yes

Classes: 2/1Classes:  1/0

Pure Leaf Node

Totals: Jedis=4, Siths=4
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Is 

clothing 

brown?
No Yes

Classes: 4/1Classes:  1/3

Is 

human?

No Yes

Classes: 0/2Classes:  1/1

Low 

Voice?

Yes No

Classes: ?Classes:  ?

Is 

human?

No Yes

Classes: 2/1Classes:  1/0

Low 

Voice?

Yes No

Classes: ?Classes:  ?

Totals: Jedis=4, Siths=4
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Data Example (Jedi/Sith): Clothing

Clothing 𝒙𝟏 Human 𝒙𝟐 Voice Pitch 𝒙𝟑 Affiliation 𝒚

Brown No Low Jedi

Brown Yes Low Sith

Brown Yes Medium Jedi

Brown Yes Medium Jedi

Black No Low Sith

Black No Medium Jedi

Black Yes Low Sith

Black Yes High Sith

40

𝑋 𝑦

1/1

2/0

1/0

0/1
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Is 

clothing 

brown?
No Yes

Classes: 4/1Classes:  1/3

Is 

human?

No Yes

Classes: 0/2Classes:  1/1

Low 

Voice?

Yes No

Classes: 1/0Classes:  0/1

Totals: Jedis=4, Siths=4

Is 

human?

No Yes

Classes: 3/1Classes:  1/0

Low 

Voice?

Yes No

Classes: 2/0Classes:  0/1
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Is 

clothing 

brown?
No Yes

Is 

human?

No Yes

SithLow 

Voice?

Yes No

JediSith

Final Tree

Is 

human?

No Yes

Jedi Low 

Voice?

Yes No

JediSith
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Is 

clothing 

brown?
No Yes

Is 

human?

No Yes

SithLow 

Voice?

Yes No

JediSith

Querying the Tree

Is 

human?

No Yes

Jedi Low 

Voice?

Yes No

JediSith
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SKLearn Fitting
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Decision Tree Pseudocode

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑇𝑟𝑒𝑒(𝒟):

 if 𝑦 = 1 ∀ 𝑥, 𝑦 ∈ 𝒟 or 𝑦 = 0 ∀ 𝑥, 𝑦 ∈ 𝒟:

  return Tree

 else:

  Pick “best” feature 𝑥𝑗:

   𝒟0 at 𝐶ℎ𝑖𝑙𝑑0 : 𝑥𝑗 = 0 ∀ 𝑥, 𝑦 ∈ 𝒟 

   𝒟1 at 𝐶ℎ𝑖𝑙𝑑1 : 𝑥𝑗 = 1 ∀ 𝑥, 𝑦 ∈ 𝒟

  return 𝑁𝑜𝑑𝑒 𝑥𝑗 , 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑇𝑟𝑒𝑒 𝒟0 , 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑇𝑟𝑒𝑒 𝒟1

45

𝑥𝑗 < 0.5

𝑥𝑗

𝑡

𝒟0 𝒟1 

≤ > 

CART algorithm 

(Classification and Regression Trees)
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Time Complexity of Growing Tree (Learning)

• Computing split nodes for a perfectly balanced binary tree:
— The total number of nodes in a binary tree is 2𝑛 − 1
— The depth of a binary tree is log2 𝑛
— The number of leaf nodes at the bottom is 2 log2 𝑛 = n

• Each training example is a leaf node

— The number of split nodes is 2𝑛 − 1 − 𝑛 = 𝑛 − 1

• Complexity computation
— Sorting a feature 𝒪 𝑛 log 𝑛  
— We have 𝑚 features, then, sorting all features takes 𝒪 𝑚𝑛 log 𝑛  
— Perform operations 1 and 2 for 𝑛 − 1 split nodes, then, growing tree takes 

𝒪 𝑚𝑛2 log 𝑛  

46

Split 1

Split 

2.1

Split 

2.2

𝑥1 𝑥2 𝑥3 𝑥4

𝑛 = 4
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Time Complexity for Predictions

Split 1

Split 

2.1

Split 

2.2

𝑥1 𝑥2 𝑥3 𝑥4

𝑛 = 4

Split 1

Split 

2.1

𝑥1 𝑥2

Split 1

Split 

2.1

𝑥2

𝑆𝑡𝑒𝑝𝑠 = log2 𝑛

Depth of tree

A prediction takes 𝒪 log 𝑛
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How to handle decisions at non-pure leaf 
nodes?

Split 1

Split 

2.1

Split 

2.2

0/3
Class 2

5/0
Class 1

3/0
Class 1

2/7
Class ?

Class1/Class2 counts.

We pick the majority 

vote.

Class 2
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Binary vs Categorical

Voice Pitch: {Low, Medium, High}

Voice

Low Medium

Voice 

Low

Voice 

Medium
High

Binary trees are more efficient.

Voice 

High

Yes

Yes No

No

=

One-Hot Encoding

Similar to linear regression: Add a new feature per category (i.e., new columns in 𝑋).
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Including Categorical Values

Binary Voice
Categorical Voice
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When to stop growing the tree?

• Node is pure
— Leaf node contains only examples of the same class

• 𝑥𝑗 feature values are the same for all examples

• Statistical significance test
— E.g., Chi-Square: Are parent and child class distributions significantly different?

51
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So far…

• General Steps:
1. Find a feature that offers the “best” split
2. Stop when a split is pure (i.e., elements for the same class)
3. Otherwise, go to Step 1 for each split subset

• Can we exhaustively search for these splits?
— No, too many combinations 
— E.g., potential thresholds, existing features, # of samples, categories.

• Is there a most efficient way to find the splits?
— Divide and Conquer Algorithms (e.g., quicksort, timsort)
— Information gain maximization

52



https://ttpoll.com/p/643115

Splitting Criteria

53
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Is 

clothing 

brown?
No Yes

Is 

human?

No Yes

SithLow 

Voice?

Yes No

JediSith

Jedi/Sith Tree

Is 

human?

No Yes

Jedi Low 

Voice?

Yes No

JediSith

Was this the better feature to start with?

What about selecting the Human 

feature at this depth?
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Choosing the “best” attribute

• Key problem: choosing which attribute to split a given set of 
examples

• Some possibilities are:
— Random: Select any attribute at random

— Least-Values: Choose the attribute with the smallest number of possible values

— Most-Values: Choose the attribute with the largest number of possible values

— Max-Gain: Choose the attribute that has the largest expected information gain
• i.e., the attribute that results in the smallest expected size of the subtrees rooted at its 

children

55 Slide Credit: Dr. Schumman
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Splits Example

x1 x2 y
6 0 FALSE
13 2 TRUE
15 0 TRUE
9 0 FALSE
4 4 TRUE
14 -1 TRUE
12 0 FALSE
12 -1 FALSE
5 1 FALSE
7 -3 TRUE
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Step 1: Plot Samples

57

𝑥2 ≤  2.5

𝑥2 ≤ −3

𝑥1 < 12.5

Yes

Yes No

No

True

True

Yes No

TrueFalse
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Step 1: Plot Samples

58

𝑥2 ≤  2.5

𝑥2 ≤ −3

𝑥1 < 12.5

Yes

Yes No

No

True

True

Yes No

TrueFalse
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Sklearn Output
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Information Gain

𝐼𝐺 𝐷𝑝, 𝑓 = 𝐼 𝐷𝑝 − 

𝑗=1

𝑚
𝑁𝑗

𝑁𝑝
𝐼 𝐷𝑗

𝐷𝑝: dataset of parent node

𝐷𝑗: dataset of child node 𝑗

𝐼: Impurity measurement

𝑓: Feature to split

𝑁𝑝: Number of training examples for parent node

𝑁𝑗: Number of training examples for children node 𝑗
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Information Gain: Binary Tree

𝐼𝐺 𝐷𝑝, 𝑓 = 𝐼 𝐷𝑝 − 

𝑗=1

𝑚
𝑁𝑗

𝑁𝑝
𝐼 𝐷𝑗 = 𝐼 𝐷𝑝 −

𝑁𝐿𝑒𝑓𝑡

𝑁𝑝
𝐼 𝐷𝐿𝑒𝑓𝑡 −

𝑁𝑅𝑖𝑔ℎ𝑡

𝑁𝑝
𝐼 𝐷𝑅𝑖𝑔ℎ𝑡

Intuition (Assume 0 ≤  𝐼 𝐷 ≤ 1 ):

If there is no information gain, then, 𝐼𝐺 𝐷𝑝, 𝑓 = 0 :

𝐼 𝐷𝑝 =
𝑁𝐿𝑒𝑓𝑡

𝑁𝑝
𝐼 𝐷𝐿𝑒𝑓𝑡 +

𝑁𝑅𝑖𝑔ℎ𝑡

𝑁𝑝
𝐼 𝐷𝑅𝑖𝑔ℎ𝑡

If there is information gain, then, 𝐼𝐺 𝐷𝑝, 𝑓 > 0 :

𝐼 𝐷𝑝 >
𝑁𝐿𝑒𝑓𝑡

𝑁𝑝
𝐼 𝐷𝐿𝑒𝑓𝑡 +

𝑁𝑅𝑖𝑔ℎ𝑡

𝑁𝑝
𝐼 𝐷𝑅𝑖𝑔ℎ𝑡
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Impurity Metrics

• Entropy (𝐼𝐻): 
— Attempts to maximize mutual information.

— How much knowledge about 𝑦 we gain from knowing split 𝐷𝑗?

• Gini (𝐼𝐺): 
— Minimizes the probability of misclassification

— Produces very similar results to Entropy.

• Classification Error (𝐼𝐸): 
— Less sensitive to changes in the node class distribution

— Useful when pruning the tree 

62
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Impurity Metrics

• Entropy (𝑰𝑯) - Shannon

• Gini (𝐼𝐺)

• Classification Error (𝐼𝐸)

63

𝐼𝐻 𝑡 = − 

𝑖=1

𝑐

𝑝 𝑖 𝑡 log2 𝑝 𝑖 𝑡

𝑝 𝑖 𝑡 : Proportion of the samples in node 𝑡 that 

belong to class 𝑖.

Binary tree:

𝐼𝐻 𝑡 = −𝑝 1 𝑡 log2 𝑝 1 𝑡 − 𝑝 0 𝑡 log2 𝑝 0 𝑡

Note:    𝑝 1 𝑡 = 1 − 𝑝 0|𝑡 = −𝑝 1 𝑡 log2 𝑝 1 𝑡 − 1 − 𝑝 1 𝑡 log2 1 − 𝑝 1 𝑡

= −𝑝 log2 𝑝 − 1 − 𝑝 log2 1 − 𝑝
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Impurity Metrics

• Entropy (𝑰𝑯)

• Gini (𝐼𝐺)

• Classification Error (𝐼𝐸)

64

𝑝: Proportion of the samples in node 𝒕 that 

belong to the True class.

Intuition:

• All samples in node 𝑡 belong to the True class

• Equal number of samples per class

Binary tree:

𝐼𝐻 𝑡 = −𝑝 log2 𝑝 − 1 − 𝑝 log2 1 − 𝑝

𝐼𝐻 𝑡 = −1 ⋅ 0 − (1 − 1) ⋅ ∞ = 0

𝐼𝐻 𝑡 = −0.5 ⋅ −1 − (1 − 0.5) ⋅ −1 = 1
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Impurity Metrics

• Entropy (𝐼𝐻)

• Gini (𝑰𝑮)

• Classification Error (𝐼𝐸)

65

𝐼𝐺 𝑡 = 

𝑖=1

𝑐

𝑝 𝑖 𝑡 1 − 𝑝 𝑖 𝑡 = 1 − 

𝑖=1

𝑐

𝑝 𝑖 𝑡 2

𝐼𝐺 𝑡 = 1 − 𝑝 1 𝑡 2 − 𝑝 0 𝑡 2

= 1 − 𝑝 1 𝑡 2 − 1 − 𝑝 1 𝑡
2

= −2(𝑝2 − 𝑝)

Binary tree:
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Impurity Metrics

• Entropy (𝐼𝐻)

• Gini (𝐼𝐺)

• Classification Error (𝑰𝑬)

66

𝐼𝐸 = 1 − max
𝑖∈𝑐

𝑝 𝑖 𝑡  

Less sensitive to class differences.

𝐼𝐸 = 1 − max{𝑝, 1 − 𝑝}

Binary tree:
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Error vs Entropy/Gini

Image source: Raschka, “Machine Learning Book”

Error:

Equal Impurity
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Error vs Entropy/Gini

Image source: Raschka, “Machine Learning Book”

Error: Gini:

Greater Purity
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Error vs Entropy/Gini

Image source: Raschka, “Machine Learning Book”

Error: Gini: Entropy:
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Demo with Iris dataset
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Demo with Iris dataset: Sepal Width and Length
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Demo with Iris dataset: Sepal Width and Length
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Demo with Iris dataset: Petal Width and Length
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Demo with Iris 
dataset: All 
Features
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ID3 – Iterative Dichotomizer

• Early algorithm proposed by Quinlan, 
1986.

• Cannot handle numeric values

• Prone to overfitting (no pruning)

• Produce short and wide trees

• Maximize information gain by minimizing 
entropy

• Support discrete features, binary and 
multi-category features

75

𝐺𝑎𝑖𝑛𝑅𝑎𝑡𝑖𝑜 𝒟, 𝑓 =
𝐺𝑎𝑖𝑛 𝒟, 𝑓

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜 𝒟, 𝑓

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜 𝒟, 𝑓 = − 

𝑣∈𝑓

𝒟𝑣

𝒟
log2

𝒟𝑣

𝒟

Measures entropy of the feature 

variable instead of the classes.
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C4.5

• Continuous and discrete features, Quinlan 1993.

• Continuous is very expensive, because must consider all possible 
ranges

• Handles missing attributes (ignores them in gain compute)

• Post-pruning (bottom-up pruning)

• Gain Ratio stop criteria

76
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CART

• Classification And Regression Trees proposed by Breiman 1984. 

• Handles continuous and discrete features

• Strictly uses binary splits (taller trees than ID3, C4.5)

• Trees produce better results that ID3 and C4.5 but are harder to 
interpret

• Tree growth
— Variance reduction in regression trees
— Gini impurity, also known as twoing.

• Cost complexity pruning
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