COSC 325: Introduction to Machine Learning

Dr. Hector Santos-Villalobos

Lecture 10: Bias, Variance, and Regularization

Class Announcements

Homework:

Homework #3 DD 09/29 Start early. TA support during weekends is not expected.

Course Project:

PRFAQ is due this Friday.

Check Additional Approved Datasets in the Course Project Assignment section. *Added two examples PRFAQ Examples.*

Lectures:

On October 1st, no attendance record due to the Engineering Expo

Exams:

Exam #1: Thursday, 10/03

- Online
- Window 11 am to 1 pm
- 75 mins

Course grade distribution change:

- Exams: 4<u>5%</u> 35%
- Homework: 20% 30%

Review

- Vectorized GD for logistic regression classification.
- Model evaluation
 - Dataset split
 - Training, validation, and testing
 - Random sampling while avoiding data leaks
 - Capacity
 - Overfitting

Today's Topics

Regularization

Model Capacity

Capacity: the ability of a model to represent a wide variety of functions that map input data to output predictions. Also known as model complexity.

 $\mathcal{H} = \{h(X) \colon X \to y\},\$

where \mathcal{H} is the hypothesis space, which consists of all possible functions that the model h(X) can learn on its architecture and parameters

- Low capacity models (e.g., linear models) have smaller hypothesis space and can only represent simpler functions.
- High capacity models (e.g., deep neural networks) have a larger hypothesis space, enabling them to approximate more complex functions.

Overfitting and Underfitting

- Underfitting: both the training and validation errors are large.
 - Usually, the result of a low-capacity model
- Overfitting: gap between training and validation error
 - Validation error >> Training Error
- For a large hypothesis space being searched by a learning algorithm, there is a high tendency to ______fit

$$\mathcal{H} = \{h(X): X \to y\}$$
, where \mathcal{H} is very large

Overfitting and Underfitting

Overfitting and Underfitting

Relation to GD Iterations

Large J Cost J_{V_1} J_{T_1} α_1 Early Late **GD** Iterations

Let's assume we want to pick a good learning rate α

*T*¹ *is overfitting*

Relation to GD Iterations

Let's assume we want to pick a

Relation to GD Iterations

good learning rate α Large J Cost J_{V_3} J_{T_3} $\alpha_2 > \alpha_3 > \alpha_1$ T₃ is about right Early Late **GD** Iterations

Model error/loss

$E[ModelError] = Bias^2 + Variance + IrreducibleError$

$E[\mathcal{L}(y, \hat{y})]$

Bias and Variance

- Sources of error
 - Bias
 - Variance
 - Irreducible Error

Error that we cannot mitigate regardless of the architecture or algorithm.

Types

- Noise: imprecise measurements (mm vs km), faulty sensors, rounding error
 - E.g., miscalibration of X-ray CT scanner.
- Missing features
 - E.g., Predict house price without sqft of house
- Nondeterministic systems
 - E.g., human behavior, weather prediction
- Data labeling errors
 - E.g., subjective interpretation of labeling task

Bias and Variance

Bias and Variance

- Sources of error
 - Bias
 - Variance
 - Irreducible Error

$$Bias^2 = \mathcal{L}(y, E[\hat{y}])$$

Bias² for SSE Loss $\mathcal{L}_{SSE}(y, E[\hat{y}]) = (y - E[\hat{y}])^2$

Bias and Variance

Bias and Variance

- Sources of error
 - Bias
 - Variance
 - Irreducible Error

 $Variance = E[\mathcal{L}(\hat{y}, E[\hat{y}])]$

Variance for SSE Loss $E[\mathcal{L}_{SSE}(\hat{y}, E[\hat{y}])] = E[(E[\hat{y}] - \hat{y})^2]$

Bias and Variance

Inspecting Bias and Variance from Cost

- Datasets
 - Training
 - Train model parameters
 - Validation
 - Test model parameters
 - Test
 - Test model parameters and <u>final</u> hyperparameters

This task is easy for humans—less than 1% error.

Underfitting

- Datasets
 - Training
 - Train model parameters
 - Validation
 - Test model parameters
 - Test
 - Test model parameters and <u>final</u> hyperparameters

Overfitting

- Datasets
 - Training
 - Train model parameters
 - Validation
 - Test model parameters
 - Test
 - Test model parameters and <u>final</u> hyperparameters

Notebook Time

So far

Pop Quiz

MULTIPLE CHOICE

A model with low bias and high variance tends to _____.

A. Overfit

B. Underfit

Regularization

What is regularization?

Medical CT coronal image

Q-Generalized Gaussian Markov Random Field (QGGMRF) Regularizer: Enhance details on lowcontrast regions.

Wang et al. ORNL and Purdue Submission to Truth CT Reconstruction Grand Challenge

What is regularization?

Medical CT coronal image

Siemens SOTA Reconstruction

Model-Based Image Reconstruction (MBIR)

Regularization helps us find the "Just Right" spot.

Regularization and Model Error

Image source: https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/

Regularization and Model Error

Image source: https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/

2

Regularization and Model Error

Image source: https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/

3

L2 Regularization (Ridge)

Logistic Regression

$$\min_{w,b} J(w) = -\frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) + \frac{\lambda}{2m} \|w\|_{2}^{2}$$

L2 Regularization:
$$||w||_2^2 = \sum_{j=1}^m w_j^2 = w^T w$$

Heavily penalizes larger weights

L2 Regularization (Ridge)

Logistic Regression

$$\min_{w,b} J(w) = -\frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) + \frac{\lambda}{2m} \|w\|_{2}^{2}$$

L2 Regularization:
$$||w||_2^2 = \sum_{j=1}^m w_j^2 = w^T w$$

Note: $\frac{\partial \left(\frac{\lambda}{2m} ||w||_2^2\right)}{\partial w_i} = \frac{\partial \left(\frac{\lambda}{2m} \sum_{j=1}^m w_j^2\right)}{\partial w_i} = \frac{\lambda}{m} w_i$

Gradient Descent with Regularization

$$dW = \frac{dJ}{dW} = dW = \frac{1}{n}A \quad dZ + \frac{\lambda}{m}W$$

$$W \coloneqq W - \alpha dW$$

$$= W - \alpha \left[\frac{1}{n}A \quad dZ + \frac{\lambda}{m}W\right]$$

$$= \left(1 - \frac{\alpha\lambda}{m}\right)W - \alpha \left[\frac{1}{n}A \quad dZ\right]$$

Also called "Weight
Decay" for this reason

Intuition on Regularization

$$\min_{W} J(W) = -\frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) + \frac{\lambda}{2m} \|W\|_{2}^{2}$$

Intuition on Regularization

$$\min_{W} J(W) = -\frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) + \frac{\lambda}{2m} \|W\|_{2}^{2}$$

If $\lambda \gg 0$, then $W \to 0$

Intuition on Regularization

$$\min_{W} J(W) = -\frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) + \frac{\lambda}{2m} \|W\|_{2}^{2}$$

If $\lambda \gg 0$, then $W \to 0$

Overfitting

Low Bias-High Variance

Higher Bias-Low Variance

Popular Regularization/Penalty Terms

Technique	Formula	Туре	Effect	Common use cases
Ridge (L2)	$\frac{\lambda}{2} \sum_{i=1}^{m} w_j^2 = w^T w$	Penalizes squared weights	Rewards smaller weights, smoother transitions.	Linear/Logistic Regression, Neural Networks
Lasso (L1)	$\lambda \sum_{j=1}^{m} w_j $	Penalizes absolute weights	Rewards sparsity (feature space reduction)	High-dimensional data
ElasticNet	$\frac{\lambda_1}{2} \ w\ _2^2 + \lambda_2 \ w\ _1$	Combines Ridge and Lasso	Balances sparsity (L1) and smoothness (L2)	High-dimensional data with correlated features
Early Stopping	N/A	Stops training after specified cost event.	Prevents overfitting by using an earlier checkpoint.	Neural Networks

Popular Regularization/Penalty Terms

Technique	Formula	Туре	Effect	Common use cases
Ridge (L2)	$\frac{\lambda}{2} \sum_{i=1}^{m} w_i^2 = w^T w$	Penalizes squared weights	Rewards smaller weights, smoother	Linear/Logistic Regression, Neural
Lasso (L1)	$\lambda \sum_{j=1}^{m} w_j $	Penalizes abs Cost weights	Ear	ly stop
ElasticNet	$\frac{\lambda_1}{2} \ w\ _2^2 + \lambda_2 \ w\ _1$	Combines Ric Lasso		
	N/A		Iterations	
Early Stopping		Stops training atter specified cost event.	by using an earlier checkpoint.	Neural Networks

Pop Quiz

The purpose of regularization is to ______.

A. compute the average parameter/weight value.

B. decrease the likelihood of overfitting.

C. decrease the capacity of the model.

D. filter the outliers in the dataset.

Review

- Capacity
- Overfitting/Underfitting
- Bias-Variance Tradeoff
- Loss = Bias² + Variance + Irreducible Error
- Regularization techniques

Next Lecture

- Decision Trees
- Ensemble techniques

