COSC 325: Introduction to Machine Learning

Dr. Hector Santos-Villalobos

Lecture 10: Bias, Variance, and Regularization

Class Announcements

Homework:

Homework #3 DD 09/29 Start early. TA support during weekends is not expected.

Course Project:

PRFAQ is due this Friday.

Check Additional Approved Datasets in the Course Project Assignment section. *Added two examples PRFAQ Examples.*

Lectures:

On October 1st, no attendance record due to the Engineering Expo

Exams:

Exam #1: Thursday, 10/03

- Online
- Window 11 am to 1 pm
- 75 mins

Course grade distribution change:

- **Exams:** 45% **35%**
- **Homework:** 20% **30%**

Review

- Vectorized GD for logistic regression classification.
- Model evaluation
	- Dataset split
		- Training, validation, and testing
		- Random sampling while avoiding data leaks
	- **Capacity**
	- **Overfitting**

Today's Topics

Regularization

Model Capacity

Capacity: the ability of a model to represent a wide variety of functions that map input data to output predictions. Also known as model complexity.

 $\mathcal{H} = \{h(X): X \to \nu\}.$

where H is the hypothesis space, which consists of all possible functions that the model $h(X)$ can learn on its architecture and parameters

- Low capacity models (e.g., linear models) have smaller hypothesis space and can only represent simpler functions.
- High capacity models (e.g., deep neural networks) have a larger hypothesis space, enabling them to approximate more complex functions.

Overfitting and Underfitting

- *Underfitting:* both the training and validation errors are large.
	- Usually, the result of a low-capacity model
- *Overfitting:* gap between training and validation error
	- Validation error >> Training Error
- For a large hypothesis space being searched by a learning algorithm, there is a high tendency to fit

$$
\mathcal{H} = \{h(X): X \to y\}, \text{ where } \mathcal{H} \text{ is very large}
$$

Overfitting and Underfitting

Overfitting and Underfitting

Let's assume we want to pick a

Relation to GD Iterations

Cost GD Iterations \int α_1 good learning rate α J_{T_1} J_{V_1} *T1 is overfitting* Early CD Iterations Late Large

Relation to GD Iterations

Relation to GD Iterations

Cost GD Iterations \int Let's assume we want to pick a good learning rate α \overline{J}_{T_3} $\alpha_2 > \alpha_3 > \alpha_1$ *T3 is about right* J_{V_3} Early CD Iterations Late Large

Model error/loss

$E[ModelError] = Bias^2 + Variance + Irreducible Error$

$E[\mathcal{L}(y, \hat{y})]$

Bias and Variance

- Sources of error
	- Bias
	- Variance
	- *Irreducible Error*

Error that we cannot mitigate regardless of the architecture or algorithm.

Types

- Noise: imprecise measurements (mm vs km), faulty sensors, rounding error
	- E.g., miscalibration of X-ray CT scanner.
- Missing features
	- E.g., Predict house price without sqft of house
- Nondeterministic systems
	- E.g., human behavior, weather prediction
- Data labeling errors
	- E.g., subjective interpretation of labeling task

- Sources of error
	- $-$ Bias
	- Variance
	- Irreducible Error

$$
Bias^2 = \mathcal{L}(y, E[\hat{y}])
$$

$$
\text{ias}^2 \text{ for SSE Loss} \\
\mathcal{L}_{SSE}(y, E[\hat{y}]) = (y - E[\hat{y}])^2
$$

Bias and Variance

- Sources of error
	- $-$ Bias
	- Variance
	- Irreducible Error

$$
Variance = E[\mathcal{L}(\hat{y}, E[\hat{y}])]
$$

Variance for SSE Loss $E[\mathcal{L}_{SSE}(\hat{y}, E[\hat{y}])] = E[(E[\hat{y}] - \hat{y})^2]$

Inspecting Bias and Variance from Cost

- Datasets
	- Training
		- Train model parameters
	- Validation
		- Test model parameters
	- Test
		- Test model parameters and *final* hyperparameters

This task is easy for humans—less than 1% error.

Underfitting

- Datasets
	- Training
		- Train model parameters
	- Validation
		- Test model parameters
	- Test
		- Test model parameters and *final* hyperparameters

Overfitting

- Datasets
	- Training
		- Train model parameters
	- Validation
		- Test model parameters
	- Test
		- Test model parameters and *final* hyperparameters

Notebook Time

So far

Pop Quiz

MULTIPLE CHOICE

A model with low bias and high variance tends to _______.

A. Overfit

B. Underfit

Regularization

https://ttpoll.com/p/548136

What is regularization?

Medical CT coronal image

https://definited.com/profital.com/profital.com/profital.com/profital.com/profital.com/profital.com/profital.com/profital.com/profital.com/profital.com/profital.com/profital.com/profital.com/profital.com/profital.com/prof Markov Random Field (QGGMRF) Regularizer: Enhance details on lowcontrast regions.

Wang et al. ORNL and Purdue Submission to Truth CT Reconstruction Grand Challenge

What is regularization?

Medical CT coronal image

Siemens SOTA Reconstruction Model-Based Image Reconstruction (MBIR)

Regularization helps us find the "Just Right" spot.

Regularization and Model Error

Image source: https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/

Regularization and Model Error

Regularization and Model Error

Image source: https://www.analyticsvidhya.com/blog/2018/04/fundamentals-deep-learning-regularization-techniques/

33

L2 Regularization (Ridge)

Logistic Regression

$$
\min_{w,b} J(w) = -\frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) + \frac{\lambda}{2m} ||w||_2^2
$$

Heavily penalizes larger weights

L2 Regulation:
$$
||w||_2^2 = \sum_{j=1}^m w_j^2 = w^T w
$$

L2 Regularization (Ridge)

Logistic Regression

$$
\min_{w,b} J(w) = -\frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) + \frac{\lambda}{2m} ||w||_2^2
$$

$$
\text{L2 Regulation: } ||w||_2^2 = \sum_{j=1}^m w_j^2 = w^T w \qquad \qquad \text{Note: } \frac{\partial \left(\frac{\lambda}{2m} ||w||_2^2\right)}{\partial w_i} = \frac{\partial \left(\frac{\lambda}{2m} \sum_{j=1}^m w_j^2\right)}{\partial w_i} = \frac{\lambda}{m} w_i
$$

Gradient Descent with Regularization

$$
dW = \frac{dJ}{dW} = dW = \frac{1}{n}A \ dZ + \frac{\lambda}{m}W
$$

\n
$$
W := W - \alpha dW = W - \alpha \left[\frac{1}{n}A \ dZ + \frac{\lambda}{m}W\right]
$$

\n
$$
= \left(1 - \frac{\alpha \lambda}{m}\right)W - \alpha \left[\frac{1}{n}A \ dZ\right]
$$

\nAlso called "Weight
Decay" for this reason.

Intuition on Regularization

$$
\min_{W} J(W) = -\frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) + \frac{\lambda}{2m} ||W||_2^2
$$

Intuition on Regularization

$$
\min_{W} J(W) = -\frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) + \frac{\lambda}{2m} ||W||_2^2
$$

If $\lambda \gg 0$, then $W \to 0$

Intuition on Regularization

$$
\min_{W} J(W) = -\frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) + \frac{\lambda}{2m} ||W||_2^2
$$

If $\lambda \gg 0$, then $W \to 0$

Overfitting

Low Bias-High Variance

Higher Bias-Low Variance

Popular Regularization/Penalty Terms

Popular Regularization/Penalty Terms

Pop Quiz

A. compute the average parameter/weight value.

B. decrease the likelihood of overfitting.

C. decrease the capacity of the model.

D. filter the outliers in the dataset.

Review

- Capacity
- Overfitting/Underfitting
- Bias-Variance Tradeoff
- Loss = Bias² + Variance + Irreducible Error
- Regularization techniques

Next Lecture

- Decision Trees
- Ensemble techniques

