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Class Announcements
Homework:
We reduced homework assignments 
from seven to six.
The deadline for homework #2 has 
shifted by a week.

Course Project:
Check groups in Canvas.

Lectures:
Absences: In your email’s subject, 
include the following text “[COSC325 
ABSENCE]”
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Today’s Topics

Regression TechniquesGradient Descent
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Last Lecture

• A model cannot make a better hypothesis 
than one provided by the sample distribution 
and within the limits of the learning category 
and technique.
• Bayes Optimal Classifier is the best solution 

when the data distribution 𝑓 is known.
• Gradient descent
— An iterative process to minimize model error
— Simplicity is King
— Needs the first derivative of the cost w.r.t the 

parameters

5
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Gradient Descent
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Pop Quiz
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Gradient Descent

• First-order optimization (find minimum or maximum) technique
— Only the first derivative is needed.

• Moves in the direction of steepest descent/accent
• It is the most popular method to minimize the error in the cost 𝐽(𝜃)
• Types of GD
— Batch: all samples are used for each update (i.e., iteration)
— Stochastic (SGD): one sample per parameter update
— Mini-Batch: a subset of the batch is used per iteration
• Typical values: 32, 64, 128, 256

9
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Gradient Descent Algorithm

𝑋 ≔ data	features
𝑦 ≔ data	targets
𝜃 = 𝜃!
Repeat:
	 3𝑦 = ℎ" 𝑋
	 𝑐𝑜𝑠𝑡 = 𝐽" 𝑦, 3𝑦
	 𝑑𝜃 = #$!	(', )')

#"
 𝜃 ≔ 𝜃 − 𝛼 𝑑𝜃
Until	a	fixed	number	of	iterations	or	𝑑𝜃	very	small.
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Gradient Descent Algorithm

𝑋 ≔ data	features
𝑦 ≔ data	targets
𝜃 = 𝜃!
Repeat:
	 3𝑦 = ℎ" 𝑋
	 𝑐𝑜𝑠𝑡 = 𝐽" 𝑦, 3𝑦
	 𝑑𝜃 = #$!	(', )')

#"
 𝜃 ≔ 𝜃 − 𝛼 𝑑𝜃
Until	a	fixed	number	of	iterations	or	𝑑𝜃	very	small.

Partial	derivative	of	J	w.r.t.	𝜃

Random initialization 
of parameters.

Typically, very small, 
non-zero values.

Use current 
hypothesis to obtain 

predictions.

Compute residuals (i.e., 
error between targets 

and predictions) Update	parameters
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Gradient Descent (GD)

• We want to find 𝜃 that minimizes 𝐽!  

• Update step
— 𝜃 ≔ 𝜃 − 𝛼 #$!

#"

“is defined to be equal to”

Partial derivative

Learning rate

We will use 𝑑𝜃
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Intuition Behind GD
𝐽 𝜃

𝜃

You	can	initialize	𝜃	to	zero	or	with	a	
random	assignment.	

In this case, zero is boring.

Let’s pick a more interesting 
initialization point.

𝐽 𝜃 = 𝜃!
𝑑𝜃 =

𝜕𝐽 𝜃
𝜕𝜃 = 2𝜃

Zero minimizes 𝐽 𝜃 ; the 
solution.
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Intuition Behind GD
𝐽 𝜃

𝜃

Let’s	assume	𝜃 = 1.
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Intuition Behind GD
𝐽 𝜃

𝜃

Repeat:		𝜃 ≔ 𝜃 − 𝛼𝑑𝜃,	
until	𝑑𝜃	is	small	enough.

Iteration	#1

Change of 𝐽 𝜃 …

…as a consequence of a 
change in 𝜃

…and 𝛼 controls the magnitude 
of the update of 𝑤

Let’s	assume	𝑤 = 1.
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Intuition Behind GD
𝐽 𝜃

𝜃

Repeat:		𝜃 ≔ 𝜃 − 𝛼𝑑𝜃,	
until	𝑑𝜃	is	small	enough.

Iteration	#1

Change of 𝐽 𝜃 …

…as a consequence of a 
change in 𝜃

…and 𝛼 controls the magnitude 
of the update of 𝑤

Note the positive 
slope

𝜃 ≔ 𝜃 − 𝛼𝑑𝜃
> 0

𝜃"#$ < 𝜃%&'
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Intuition Behind GD
𝐽 𝜃

𝜃

Repeat:			𝜃 ≔ 𝜃 − 𝛼𝑑𝜃,	
until	𝑑𝜃	is	small	enough.

Iteration	#1

Iteration	#2

Iteration	#3

Iteration	#4

Iteration	#5
Iteration	#6

Iteration	#7

Note a flat slope (𝑑𝜃 ≈ 0) at 
𝜃 = 0. We stop here.
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Intuition Behind GD
𝐽 𝜃

𝜃	

Let’s	assume	we	start	at		𝜽 = −𝟏.

Note negative slope

𝜃 ≔ 𝜃 − 𝛼𝑑𝜃

< 0

𝜃"#$ > 𝜃%&'

Repeat:			𝜃 ≔ 𝜃 − 𝛼𝑑𝜃,	
until	𝑑𝜃	is	small	enough.
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Pop Quiz
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Pop Quiz
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The derivative of a function w.r.t to a variable 
measures the influence of that variable.

22
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Intuition Behind GD
𝐽 𝜃

𝜃

Iteration	#1
Let’s	assume	𝑤 = 1.

𝐽 𝜃 = 𝜃O,
𝑑𝐽
𝑑𝜃

= 2𝜃

𝐽 1.001 = 1.001O = 1.002, 

So, a change of 0.001 in 𝜃 leads to a change 
of 0.002 in 𝐽(𝜃) or a 2x change.𝐽 1.0 = 1.0O = 1.0,	

Tiny change in 𝜃.

Repeat:			𝜃 ≔ 𝜃 − 𝛼𝑑𝜃,	
until	𝑑𝜃	is	small	enough.
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Intuition Behind 𝜶
𝐽 𝜃

𝜃

Iteration	#1

If 𝛼 = 0.1:

𝜃P ≔ 1− 0.1×2.0 = 1 − 0.2 = 0.8

𝜃O ≔ 0.8 − 0.1×1.6 = 0.64

𝜃QR ≔ 4×10ST − 0.1×4×10ST = 3×10ST
⋮

Note as we get closer to 
optimization point 

updates slow down.

𝐽 𝜃 = 𝜃O,
𝑑𝐽
𝑑𝜃

= 2𝜃

Repeat:			𝜃 ≔ 𝜃 − 𝛼𝑑𝜃,	
until	𝑑𝜃	is	small	enough.
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Intuition Behind 𝜶
𝐽 𝜃

𝜃

Iteration	#1

𝐽 𝜃 = 𝜃O,
𝑑𝐽
𝑑𝜃

= 2𝜃

Repeat:			𝜃 ≔ 𝜃 − 𝛼𝑑𝜃,	
until	𝑑𝜃	is	small	enough.

If 𝛼 = 0.5:

𝜃P ≔ 1− 0.5×2.0 = 1 − 1 = 0

𝜃O ≔ 0− 0.5×0 = 0
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Intuition Behind 𝜶
𝐽 𝜃

𝜃

Iteration	#1

If 𝛼 = 0.75:

𝜃P ≔ 1− 0.75×2.0 = 1 − 1.5 = −0.5

𝜃O ≔ −0.5 − 0.75×(−1) = 0.25

𝜃T ≔ −3×10ST − 0.75×3×10ST = 2×10ST

𝐽 𝜃 = 𝜃O,
𝑑𝐽
𝑑𝜃

= 2𝜃

Repeat:			𝜃 ≔ 𝜃 − 𝛼𝑑𝜃,	
until	𝑑𝜃	is	small	enough.
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GD Learning Rate 

Image source: https://blog.paperspace.com/intro-to-optimization-in-deep-learning-gradient-descent/

𝛼 just right 𝛼 too large
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Pop Quiz
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Challenges

• The method can get stuck in local minima and saddle points.
— Sensitive to initialization point

29

Image source: https://towardsdatascience.com/a-visual-explanation-of-gradient-
descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c 

Image source: https://blog.paperspace.com/intro-to-optimization-momentum-rmsprop-adam/ 

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c
https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c
https://blog.paperspace.com/intro-to-optimization-momentum-rmsprop-adam/
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Other Optimization Alternatives

• Newton Method
— Requires 2nd derivative (i.e., Hessian)
— Computational expensive
— Many functions do not have a second derivative

• Limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS)
— Approximates the second derivative
• Faster convergence
• Robustness for ill-conditioned problems

— Automated learning rate
— It uses lots of memory, and implementation is complex

30
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Pop Quiz
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Pop Quiz
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Notebook Time

33
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Linear Regression
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Linear Regression

• Supervised learning category

• Model Purpose: Establishes a 
linear relationship between the 
independent variable (i.e., input 
feature vector) 𝑥 and the 
dependent variable (i.e., 
target/label) 𝑦.

# Bedrooms

Housing Market Price Prediction

Market
Price
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Assumptions

• Linear relationship between features and targets.

• Observations are independent of each other.

• The variance of errors is consistent across all levels 
of the independent variables (i.e., Homoscedasticity).

• The errors between targets and predictions are 
normally distributed (i.e., normality).

36
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Linear Regression

• For 𝑚 = 1:

37

𝑦(") = 𝜃$𝑥 " + 𝜃%

𝜃s are the 
parameters to learn

For 𝑚 = 𝑛(:

𝑦 " = 𝜃% + 𝜃$𝑥$
" + 𝜃&𝑥&

" +⋯+ 𝜃'𝑥'
"   

𝑦 " = 𝑥 " (𝜃

Shape: 1,1

Shape: 1,𝑚

?
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Linear Regression

• For 𝑚 = 1:

38

𝑦(") = 𝜃$𝑥 " + 𝜃%

𝜃s are the 
parameters to learn

For 𝑚 = 𝑛(:

𝑦 " = 𝜃%1 + 𝜃$𝑥$
" + 𝜃&𝑥&

" +⋯+ 𝜃'𝑥'
"   

𝑦 " = [1, 𝑥 " (]𝜃

Shape: 1,1

Shape: 1,𝑚 + 1

Shape: 𝑚 + 1, 1
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Strengths
• Simplicity and Interpretability:

— Linear regression is easy to understand and implement
— The model’s coefficients provide insights into the relationship between each feature and the 

target, allowing for straightforward interpretability.

• Computational Efficiency:
— Linear regression is computationally inexpensive, making it suitable for large datasets with 

many features.

• Closed-form Solution:
— The parameters of a linear regression model can be estimated using a closed-form solution via 

the normal equation, eliminating the need for iterative methods like gradient descent (in most 
cases).

• Versatility:
— It can be extended to polynomial regression by adding polynomial features, allowing the model 

to capture non-linear relationships.

39
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Weaknesses
• Limited Flexibility:
— Linear regression can only capture linear relationships. It may perform poorly when the 

true relationship between features and target is non-linear.
• Sensitive to Outliers:
— Linear regression is highly sensitive to outliers, which can disproportionately affect the 

model's performance and skew the results.
• Assumptions Limitations:
— The model's effectiveness depends on fulfilling its assumptions. Violations can lead to 

inaccurate predictions.
• Overfitting with High-Dimensional Data:
— In the presence of many features, especially when the number of features approaches 

the number of observations, linear regression can overfit, leading to poor 
generalization of new data.

40
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Computing 𝑑𝑍 = 𝑑𝜃

Gradient Descent for a Linear Regressor

41
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Gradient Descent Algorithm

𝑋 ≔ data	features
𝑦 ≔ data	targets
𝜃 = 𝜃!
Repeat:
	 3𝑦 = ℎ" 𝑋
	 𝑐𝑜𝑠𝑡 = 𝐽" 𝑦, 3𝑦
	 𝑑𝜃 = #$!	(', )')

#"
 𝜃 ≔ 𝜃 − 𝛼 𝑑𝜃
Until	a	fixed	number	of	iterations	or	𝑑𝜃	very	small.

)𝑦 = ℎ( 𝑋 = 𝑋𝜃

𝐽 𝑦, )𝑦 =
1
𝑛∑ )𝑦 ) − 𝑦 ) !

?

First column full of ones.
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Computing the derivative of the cost 
𝑱𝜽 w.r.t. to parameters 𝜽

• Recall: the derivative of 𝜃 measures the influence of 𝜃 on the 
expected error 𝐽!.

• How do we compute 
./!	(2, 32)

.!
?

— Computation graphs
— Calculus Chain Rule

• Need to know
— 3𝑦 = ℎ" 𝑋
— Loss function ℒ"

43

= 𝑋𝜃 = 𝜃* + 𝑥+𝜃+ +⋯+ 𝑥,𝜃,

= )𝑦 − 𝑦 ! 

If we change any of these two, 
the derivative equation 
changes.
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Chain Rule Refresher

• What is it?

44

You need to identify the inner 
and outer functions of a 

composite function.

𝑑
𝑑𝑥 𝑓 𝑔 ℎ(𝑥)

_
_` 𝑓 𝑔(𝑥) = _

_` 𝑓 𝑔 𝑥 _
_` 𝑔 𝑥

𝑢 = 𝑔 x

_
_` 𝑓 𝑔(𝑥) = _

_a 𝑓 𝑢 _
_` 𝑔 𝑥 = _b

_a
_a
_`

𝑢 = 𝑔 𝑥 	and	𝑏 = ℎ(𝑥)

=
𝑑𝑓
𝑑𝑢

𝑑𝑢
𝑑𝑏

𝑑𝑏
𝑑𝑥

If we can break g(x) further, 
we can add that inner 
function to the chain.

= _
_` 𝑓 𝑔 𝑥 _

_` 𝑔 ℎ(𝑥) _
_` ℎ(𝑥)
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Chain Rule Refresher

• Example

45

𝑓 𝑥 =
1

1 − 𝑥 O g x = u = 1 − 𝑥

𝑑𝑓
𝑑𝑢 =

−2
𝑢c𝑑𝑢

𝑑𝑥
= −1

𝑑𝑓
𝑑𝑥

=
𝑑𝑓
𝑑𝑢

𝑑𝑢
𝑑𝑥

𝑓 𝑢 =
1
𝑢O

=
−2

1 − 𝑥 c×−1 =
2

1 + 𝑥 c
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What is a computation graph?

Inputs Broken down Operations Output Operation

𝑓 𝑥, 𝑦 = 2(𝑥 +
𝑦
2
)

x

y

𝑎 = 𝑥 +
𝑦
2 𝑓 = 2𝑎
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What is a computation graph?

Inputs Broken down Operations Output Operation

𝑓 𝑥, 𝑦 = 2(𝑥 +
𝑦
2
)

x

y

𝑎 = 𝑥 +
𝑦
2 𝑓 = 2𝑎

If I am interested in measuring 
the influence of 𝑦 on 𝑓.

We can use the graph to compute 
the derivative using the chain rule.

𝑑𝑎
𝑑𝑦

=
1
2

𝑑𝑓
𝑑𝑎

= 2

𝑑𝑓
𝑑𝑦

=
𝑑𝑓
𝑑𝑎

𝑑𝑎
𝑑𝑦

= 1
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Computation Graph for Linear Regression
Assumes MSE as the cost function.

𝐽 =
1
𝑛
∑ 7𝑦 − 𝑦 !

y

7𝑦 = 𝜃" + 𝜃#𝑥# +⋯+ 𝜃$𝑥$

𝜃"

...

𝜃$

𝑥#

…	

𝑥$
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Computation Graph for Linear Regression
Assumes MSE as the cost function.

𝐽 =
1
𝑛
∑ 𝜖 !𝜖 = /𝑦 − 𝑦

𝑦

/𝑦 = 𝜃" + 𝜃#𝑥# +⋯+ 𝜃$𝑥$

𝜃"

...

𝜃$

𝑥#

…	

𝑥$

𝑑𝐽
𝑑𝜖

𝑑𝜖
𝑑 3𝑦

𝑑 3𝑦
𝑑𝜃'

Influence of 𝜃' on the cost 𝐽…
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Computation Graph for Linear Regression
Assumes MSE as the cost function.

! = 1
$∑ & !& = '( − '

'

'( = *" + *#,# +⋯+ *$,$

*"

...

*$

,#

…	

,$

!"
!#

!#
!$%

!$%
!&0

Influence of &0 on the cost "…
𝑑𝐽
𝑑𝜖

=
1
𝑛
∑ 2𝜖 " =

2
𝑛
∑ 𝜖 "

𝑑𝜖
𝑑 3𝑦 = 1

𝑑 3𝑦
𝑑𝜃'

= 𝑥'
"

89
8:!

= 89
8;

<;
8 /=

8 /=
8:!

= &
>∑ 𝜖 " 1 𝑥'

" = &
>∑ 3𝑦 " − 𝑦 " 𝑥'

"
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Computation Graph for Linear Regression
Assumes MSE as the cost function.

! = 1
$∑ & !& = '( − '

'

'( = *" + *#,# +⋯+ *$,$

*"

...

*$

,#

…	

,$

!"
!#

!#
!$%

!$%
!&0

Influence of &0 on the cost "…

𝑑𝐽
𝑑𝜃'

=
2
𝑛∑ 3𝑦 " − 𝑦 " 𝑥'

"

𝑑𝐽
𝑑𝜃?

=
2
𝑛
∑ 3𝑦 " − 𝑦 " 𝑥?

"

𝑑𝐽
𝑑𝜃

=
2
𝑛
𝑋( 3𝑦 − 𝑦

Vectorize
Average parameter 

𝑘 derivative 
(all samples)
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Exact Solution vs. Gradient Descent 

• This gives an exact solution (modulo numerical inaccuracy for 
inverting the matrix)

• Gradient descent gives you progressively better solutions and 
eventually gets to an optimum

52

𝜃 = 𝑋!𝑋 "#𝑋!𝑦
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Exact Solution vs. Gradient Descent 

• Is calculating the exact solution more efficient?
• Running gradient descent for one step is Ο(𝑛 ∗ 𝑚)	time with a small 

time constant
— Running it for 𝑘 iterations is Ο(𝑘 ∗ 𝑛 ∗ 𝑚)
• The closed form solutions requires:
— Constructing 𝑋g𝑋, which takes Ο 𝑛 ∗ 𝑚O

— Inversion, which takes Ο(𝑛 ∗ 𝑚O)
— Multiplications, which take Ο(𝑚c)	
— Overall run time: Ο(𝑚c + 𝑛 ∗ 𝑚O)	
— Note: In most cases, 𝑁 > 𝐷, so this is dominated by 𝑂(𝐷 𝑁)

53
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Exact Solution vs. Gradient Descent 

• GD Solution: Ο(𝑛 ∗ 𝑚)
• Close solution: Ο(𝑚? + 𝑛 ∗ 𝑚@)
• Guidance:
— Typically 𝑛 > 𝑚
— Will you need to run more than 𝑚 iterations of gradient descent?
• Yes? Close form solution may be faster
• No? Gradient descent may be faster

— For m ≤ 100, it’s probably faster to do a closed form solution
— For m ≥ 10000, it’s probably faster to do gradient descent
— For in between...it’s unclear 

54
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Notebook Time

55
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Review

• Gradient descent algorithm and concepts
— Convexity, learning rate, saddle point, global vs. local minimum, etc.

• Derivatives measure the influence of a variable on the function output.
• Computational graphs and the chain rule

• Linear regression
— Close form vs. GD solutions
— Python implementation.
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Next Lectures

• Regression Techniques
—Polynomial
— Logistic 

• Logistic classification

• Cross Entropy Loss

57
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What: UTK Machine Learning Club

Where: MK 525

When: Tuesday at 5:00
(including today)

Who: Any experience level

Everyone is welcome to the first meeting of ML 
club today. Whether you are a beginner looking to 
learn from our intro to ML lesson series, 
experienced practitioner who wants to learn from 
and discuss with other enthusiasts in our reading 
groups, or you just want to hear from our industry 
guest speakers and seminars, utkML can help you 
scratch your machine learning itch!


