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Class Announcements
Homework:

We will release the key by the end of 

the week.

Exams:

Exam #1: (1) Online, (2) Time-bounded 

1 hr, (3) From 11 am to 1 pm.

Lectures:

The October 10th lecture will be online.

Course Project:

Team assignments by the end of the 

week. Check Canvas->People.
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What: UTK Machine Learning Club

Where: MK 525

When: Tuesday at 5:00
(including today)

Who: Any experience level

Everyone is welcome to the first meeting of ML 
club today. Whether you are a beginner looking to 
learn from our intro to ML lesson series, 
experienced practitioner who wants to learn from 
and discuss with other enthusiasts in our reading 
groups, or you just want to hear from our industry 
guest speakers and seminars, utkML can help you 
scratch your machine learning itch!
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Today’s Topics

Gradient DescentLearning Theory

5



https://ttpoll.com/p/389226

Last Lecture

• Pandas
— Excellent tool for data preprocessing

• Scikit-learn
— Playground for everything ML

6
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Pop Quiz
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ML Life Cycle
Use Case / Application

• Cancer detection

• Clustering

• Object segmentation

• Control of pressure valve

Machine Learning Category

• Supervised

• Self-supervised

• Semi-supervised

• Reinforcement

Data

• Data acquisition

• Training, validation, test data split

• Data Wrangling

• Exploratory Data Analysis (EDA)

• Data Scaling

• Data cleaning

• Feature extraction and selection

Machine Learning Technique

• Specific technique

• Linear Regression

• Multi-layer Perceptrons (MLP)

• KNNs

• Objective Functions (ML Training)

• Hyperparameter tuning

Evaluation

• Bias/Variance Analysis

• Cross-Validation

• Performance Metric (Application)

• Explainability

• Fairness, Transparency, and Privacy

Deployment

• Stress test

• Key Performance Indicators (KPIs)

• Model Monitoring

• Data drift

• Model Refresh

8
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Examples of ML Techniques

Image source: https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html

RBF – Radial Basis Function

QDA – Quadratic Discriminant Analysis
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Hypothesis Space

Slide credit: Dr. Raschka

Entire hypothesis space 𝑓(𝑥)

Hypothesis space for a 

particular learning 

category

Hypothesis space for a 

particular learning 

algorithm/technique

Particular hypothesis ℎ𝜃(𝑥)

A model cannot make a 

better hypothesis than one 

provided by the sample 

distribution and within the 

limits of the learning 

category and technique.

“All models are 

wrong, but 

some are 

useful.” 
– Prof. George Box
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What does 𝒇(𝒙, 𝒚) tell us?

• 𝑓 𝑥, 𝑦  is the true hypothesis probability distribution for data in 𝑓

• If features/target pair (𝑥, 𝑦) 
— Belongs to 𝑓, then, 𝑓 will return a high probability ~1.

— Does not belong to 𝑓, then, 𝑓 will return a low probability ~0.

• Example: Assume 𝑓 is the probability distribution of images of an 
object 𝑥 and the corresponding label 𝑦.

12
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What does 𝒇(𝒙, 𝒚) tell us?
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• Example: Assume 𝑓 is the probability distribution of images of an 
object 𝑥 and the corresponding label 𝑦.
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𝑦 “Cat” “Car” “Mountain Cat”

𝑥

𝑓(𝑥, 𝑦) 0.98 0.95 0.32
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What does 𝒇(𝒙, 𝒚) tell us?

• If features/target pair (𝑥, 𝑦) 
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What does 𝒇(𝒙, 𝒚) tell us?

• If features/target pair (𝑥, 𝑦) 
— Belongs to 𝑓, then, 𝑓 will return a high probability ~1.

— Does not belong to 𝑓, then, 𝑓 will return a low probability ~0.

• Example: Assume 𝑓 is the probability distribution of images of an 
object 𝑥 and the corresponding label 𝑦.

15

𝑦 “Cat” “Car” “Mountain Lion”

𝑥

𝑓(𝑥, 𝑦) 0.98 0.95 0.32
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Pop Quiz
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Pop Quiz

A model cannot make a 

better hypothesis than one 

provided by the sample 

distribution and within the 

limits of the learning 

category and technique.

This applies to DL also.
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Important Note

• We make NO assumptions about what the distribution 𝑓 looks like or 
what it is
— If we did know, it would make our learning problem easier!

• We can only get a random sample from 𝑓
— This is our training data!

18 Slide credit: Dr. Schuman
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When we know 𝑓.

Bayes Optimal Classifier

19
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Data Generating Distributions 

• The underlying assumption is that learning problems are 
characterized by some unknown probability distribution 𝑓 over 
input/output pairs (𝑥, 𝑦)

• Suppose we know what 𝑓 is
— If we have a density function that takes 𝑥 and 𝑦 and produces a probability of 

that pair in 𝑓

• If we have that, classification becomes easy (Bayesian Optimal 
Classifier):

Slide credit: Dr. Schuman

ො𝑦 = ℎ𝐵𝑂(𝑥) = arg max
𝑦∈𝐶

𝑓 𝑥, 𝑦 

𝐶 is the set of possible targets.
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Theorem #1: Bayes Optimal Classifier

• Bayesian optimal classifier:

• Theorem 1: The Bayes Optimal Classifier ℎ 𝐵𝑂  achieves minimal 
zero/one error of any deterministic classifier.

— Note: This assumes comparison against deterministic classifiers ( ො𝑦 𝑖 = ℎ 𝑥 𝑖 )

21

ℎ𝐵𝑂(𝑥) = arg max
𝑦∈𝐶

𝑓 𝑥, 𝑦  

0−1 loss = Zero/One Error =
1

𝑛
෍

𝑖=1

𝑛

𝕀 ො𝑦 𝑖 ≠ 𝑦 𝑖

Slide credit: Dr. Schuman
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Proof of Theorem #1

• Suppose you have a classifier 𝑔 that claims to be better than ℎ 𝐵𝑂

• There must be 𝑥 on which 𝑔 𝑥  ≠ ℎ 𝐵𝑂 𝑥 .

• Probability that ℎ 𝐵𝑂  makes an error on this particular 𝑥 is:

• Similarly, the probability that 𝑔 makes an error on this particular 𝑥 is:

22

1 − 𝑓 𝑥, ℎ 𝐵𝑂 𝑥  

1 − 𝑓 𝑥, 𝑔 𝑥  

Slide credit: Dr. Schuman
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Proof of Theorem #1 (Continued)

• However, ℎ 𝐵𝑂  was chosen so that it maximizes 𝑓 𝑥, ℎ 𝐵𝑂 𝑥 , thus:

• So, the probability that ℎ 𝐵𝑂  is wrong on this 𝑥 is smaller than that of 
𝑔 on this 𝑥.

— This applies to any 𝑥 for which 𝑔 𝑥 ≠ ℎ 𝐵𝑂

• Thus, ℎ 𝐵𝑂  achieves smaller zero/one error than any 𝑔.

• QED (Quod Erat Demonstrandum)

23

𝑓 𝑥, ℎ 𝐵𝑂 𝑥 > 𝑓 𝑥, 𝑔 𝑥  ⇒ 1 − 𝑓 𝑥, ℎ 𝐵𝑂 𝑥 < 1 − 𝑓 𝑥, 𝑔 𝑥  

Slide credit: Dr. Schuman
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Notebook Time

24
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Pop Quiz
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Pop Quiz
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Bayes Optimal Error Rate

• The best error rate you can ever hope to achieve on a particular 
classification problem. 

• Building the optimal classifier would be trivial if someone gave you the 
data distribution 𝑓. 

• We don’t have that, so we must figure out how to build a classifier ℎ 
with a training set sampled from 𝑓.

27
Slide credit: Dr. Schuman
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Important Reminder
We can NEVER expect a machine learning algorithm 

to generalize beyond the data distribution, the 

learning category, and the learning technique. 
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Review

• Hypothesis 𝒇:

• Model 𝒉𝜽:

• 𝜽:

• Learning algorithm:

• Objective function 𝑱𝜽:

29

Slide credit: Dr. Raschka
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Review

• Hypothesis 𝒇: A hypothesis is a certain function that we believe (or hope) is similar to the true function, the 
target function we want to model. 

• Model 𝒉𝜽: In the machine learning field, the terms hypothesis and model are often used interchangeably. In 
other sciences, they can have different meanings. 

• 𝜽: The learned parameters for model ℎ𝜃.

• Learning algorithm: Again, our goal is to find or approximate the target function, and the learning algorithm 
is a set of instructions that tries to model the target function using our training dataset. A learning algorithm 
comes with a hypothesis space, the set of possible hypotheses it explores to model the unknown target 
function by formulating the final hypothesis. It is also called learning technique.

• Objective function 𝑱𝜽: Often synonymously with loss ℒ𝜃 or cost function; sometimes called error function, 
empirical risk, or training error. In some contexts, the loss is for a single data point, whereas the objective 
function refers to the expected error/loss over the entire dataset.

30

Slide credit: Dr. Raschka
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The relationship between the expected value 
and the cost 𝑱(𝜽) 

31
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Loss and Cost Functions

• Loss ℒ𝜃 𝑦
𝑖

, ො𝑦
(𝑖)

 is the error between 

the ground truth (i.e., expected response) 

𝑦
𝑖

 and the model prediction ො𝑦 𝑖 .

• Cost 𝐽 𝜃  is a measure of overall model 
error for parameters 𝜃.

32

Per sample 𝑥 𝑖

Expected Performance

We want 

both to be 

SMALL
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Expected Value 

• Expectation means “average”

• If you draw a bunch of (𝑥, 𝑦) pairs independently at random from 𝑓, 
what would your average loss be?

𝐸𝑥,𝑦~𝑓 𝑓 𝑥, 𝑦 ℒ 𝑦, ℎ 𝑥

Slide credit: Dr. Schuman
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Expected Value

• Weighted average loss over all (𝑥, 𝑦) pairs in 𝑓, weighted by their 
probability 𝑓(𝑥, 𝑦). If 𝑓(𝑥, 𝑦) is a finite discrete distribution, e.g., 
defined by a finite data set 𝑥 1 , 𝑦 1  , … , 𝑥 𝑛 , 𝑦 𝑛  that puts 

equal weight on each example

34

𝐸𝑥,𝑦~𝑓 𝑓 𝑥, 𝑦 ℒ 𝑦, ℎ 𝑥 = ෍

𝑥,𝑦 ∈𝑓

𝑓 𝑥, 𝑦 ℒ 𝑦, ℎ 𝑥

= ෍

𝑖=1

𝑛

𝑓 𝑥 𝑖 , 𝑦 𝑖 ℒ 𝑦 𝑖 , ℎ 𝑥 𝑖 = ෍

𝑖=1

𝑛
1

𝑛
ℒ 𝑦 𝑖 , ℎ 𝑥 𝑖 =

1

𝑛
෍

𝑖=1

𝑛

ℒ 𝑦 𝑖 , ℎ 𝑥 𝑖

Slide credit: Dr. Schuman
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Loss and Cost Functions

• Loss ℒ𝜃 𝑦
𝑖

, ො𝑦
(𝑖)

 is the error between 

the ground truth (i.e., expected response) 

𝑦
𝑖

 and the model prediction ො𝑦 𝑖 .

• Cost 𝐽 𝜃  is a measure of overall model 
error for parameters 𝜃.
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Per sample 𝑥 𝑖

Expected Performance

We want 

both to be 

SMALL
The average loss J 𝜃 =

1

n
σ𝑖=1

𝑛 ℒ ො𝑦
(𝑖)

, 𝑦
𝑖

.
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How do computers learn?

Connecting the data (𝑥, 𝑦) to the loss ℒ𝜽.
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Learning Problem Definition

• Learning problem defined by:
— The loss ℒ𝜃 𝑦, ℎ𝜃(𝑥)  function, which captures our notion of what is important 

to learn

— The data generating distribution 𝑓, which defines the data we expect to see

• Based on the training data, we induce a function ℎ𝜃(𝑥) that maps new 
inputs 𝑥 to predictions ො𝑦

• ℎ should do well (based on the loss function) on future examples that 
are ALSO drawn from 𝑓

• We care about 𝑓, but we don’t know 𝑓.

37 Slide credit: Dr. Schuman
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ML Induction

• Formal definition of induction machine learning: 

38

Given (i) a loss function ℒ𝜃  and (ii) a sample from some 

unknown distribution 𝑓, you must compute a function ℎ that 

has low expected error over 𝑓 w.r.t. ℒ𝜃.

Slide credit: Dr. Schuman
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Regression Objective Function Candidates

• Sum of Squared Residuals (Very similar to MSE)

39

Makes small residuals 

even smaller

Makes large residuals 

explode in magnitude.

Convex objective function

(i.e., a local minimum is a 

global minimum)

It is by far the most 

popular objective 

function for regression 

problems.
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Regression Objective Function Candidates

• Sum of Squared Residuals (Very similar to MSE)

• Mean Absolute Error

40

Less sensitive to 

outliers

Non-differentiable at 

zero (i.e., 𝑦(𝑖) == ො𝑦 𝑖 )
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Regression Objective Function Candidates

• Sum of Squared Residuals (Very similar to MSE)

• Mean Absolute Error

• Huber Loss

41

Combines the strengths of SSR 

and MAE (i.e., quadratic for small 

errors and linear for large errors)
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Preferred Objective Functions Characteristics

• Adequate sensitivity to outliers

• Computationally efficient

• Differentiable everywhere

• Interpretable

• Convex

• Aligned with the use case

42
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How do computers learn?

Hypothesis 
ℎ

Parameters

𝜃 0

Predictions

ො𝑦

Targets

𝑦

Features

𝑋

Objective 
Function

𝐽(𝜃)

Data

Zeros or random 

initialization
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How do computers learn?

Hypothesis 
ℎ

Parameters

𝜃 0

Predictions

ො𝑦

Targets

𝑦

Features

𝑋

Objective 
Function

𝐽(𝜃)

Data

We want to update our 

parameters based on 

the measured error.

Measures the 

model's current 

error
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How do computers learn?

Hypothesis 
ℎ

Parameters

𝜃 1

Predictions

ො𝑦

Targets

𝑦

Features

𝑋

Objective 
Function

𝐽(𝜃)

Data
We can test our updated 

parameters for a new 

measurement of error.

Again, we update the 

parameters on the new 

measured error.

We repeat (i.e., iterate) 

this process until the 

error is small enough or 

we reach a maximum 

number of iterations.
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How can we learn 𝜽? 

How does this magic happen?

46
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Gradient Descent
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Gradient Descent

• First-order optimization (find minimum or maximum) technique
— Only the first derivative is needed.

• Moves in the direction of steepest descent/accent

• It is the most popular method to minimize the error in the cost 𝐽(𝜃)

• Types of GD
— Batch: all samples are used for each update (i.e., iteration)

— Stochastic (SGD): one sample per parameter update

— Mini-Batch: a subset of the batch is used per iteration
• Typical values: 32, 64, 128, 256

49
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Gradient Descent Algorithm

𝑋 ≔ data features
𝑦 ≔ data targets
𝜃 = 𝜃0

Repeat:
 ො𝑦 = ℎ𝜃 𝑋
 𝑐𝑜𝑠𝑡 = 𝐽𝜃 𝑦, ො𝑦

 𝑑𝜃 =
𝜕𝐽𝜃 (𝑦, ො𝑦)

𝜕𝜃

 𝜃 ≔ 𝜃 − 𝛼 𝑑𝜃
Until a fixed number of iterations or 𝑑𝜃 very small.
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Review

• A model cannot make a better hypothesis than one provided by the 
sample distribution and within the limits of the learning category and 
technique.

• Bayes Optimal Classifier is the best solution when the data distribution 
𝑓 is known.

• Gradient descent
— An iterative process to minimize model error
— Simplicity is King

— Needs the first derivative of the cost w.r.t the parameters
— A derivative tells us the influence of a parameter on the cost

51
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Next Lecture

• We will apply these concepts to
— Linear regression

— Polynomial regression

— Logistic regression and classification

52
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What: UTK Machine Learning Club

Where: MK 525

When: Tuesday at 5:00
(including today)

Who: Any experience level

Everyone is welcome to the first meeting of ML 
club today. Whether you are a beginner looking to 
learn from our intro to ML lesson series, 
experienced practitioner who wants to learn from 
and discuss with other enthusiasts in our reading 
groups, or you just want to hear from our industry 
guest speakers and seminars, utkML can help you 
scratch your machine learning itch!
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