COSC 325: Introduction to Machine Learning

Dr. Hector Santos-Villalobos

Dr. Santos

Lecture 03: Scientific Computing with Python

Class Announcements

Homework:

First homework due Sunday 09/01. The due date may shift according to the material covered. TAs will not troubleshoot your code.

Quizzes:

Office hours question out of date.

Course Project: Pick teammates by 08/29

Today's Topics

Notation

Scientific Computing in Python

Last Lecture

- Machine learning
 - A subfield of artificial intelligence
 - Models need to generalize (i.e., learn)
 - Task, Experience, Performance
 - Different learning categories
- Programming
 - Python: flexible, efficient, collaborative, powerful
 - Always work from a dockerized or virtual environment
 - Practice

MY PYTHON ENVIRONMENT HAS BECOME SO DEGRADED HAT MY LAPTOP HAS BEEN DECLARED A SUPERFUND SITE

Machine Learning Categories

Supervise Learning

- Trained on "Labeled dataset"
- Needs pairs of inputs and outputs (ground truth)

Unsupervised Learning

- The algorithm discovers patterns and relationships in unlabeled data
- It needs inputs only and, most of the time, some context. (e.g., number of unique labels)

Semi-Supervised Learning

- Combines SL and UL
- E.g., a small subset of labeled data is used to label unlabeled data.
- E.g., Generative Adversarial Network mapping blonde to brunette.

Reinforcement Learning

- It learns by interacting with the environment.
- Trial, error, and delay
- Needs well-defined reward feedback.

Supervised Learning Workflow

Inputs Representation

$x^{(i)} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix}$ Feature Vector $m = n_x$ $x^{(i)} = \begin{bmatrix} Sqft size of house \\ zipcode \\ \vdots \\ no. bathrooms \\ no. bedrooms \end{bmatrix}$ List of floating or integer numbers

House Market Price

Inputs Representation

$$x^{(i)} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix}$$

Feature Vector

Input Notation

What about color?

Input $x^{(i)}$

=30,000

What about text?

Email Spam Detector

National Security Department

A vulnerability has been identified in the Apple Facetime mobile applications that allow an attacker to record calls and videos from your mobile device without your knowledge.

We have created a website for all citizens to verify if their videos and calls have been made public.

Feature Vector

 $x^{(i)} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ \vdots \end{bmatrix}$

To perform the verification, please use the following link:

Facetime Verification

This website will be available for 72 hours.

National Security Department

Check this tutorial about a spam email classifier with logistic regression: https://towardsdatascience.com/spam-detection-with-logistic-regression-23e3709e522

Check this tutorial about a spam email classifier with logistic regression: https://towardsdatascience.com/spam-detection-with-logistic-regression-23e3709e522

17

Representing the dataset

A sample: (x, y) $x \in \mathbb{R}^m$, $y \in \{0, 1\}$ Ground Truth Set of Samples: { $(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ..., (x^{(n)}, y^{(n)})$ } Input Label Matrix representation of inputs: $X = \begin{bmatrix} x^{(1)T} \\ x^{(2)T} \\ \vdots \\ x^{(n)T} \end{bmatrix}$ $X \in \mathbb{R}^{n \times m}$ Python X.shape = (n, m)Number of rowsNumber of rowsNumber of rowsMatrix representation of labels: $Y = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(n)} \end{bmatrix}$ $Y \in \mathbb{R}^{n \times 1}$ Scalar StructureScalar StructureYet Structure

Data Representation

$$x^{(i)} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix}$$

$$X = \begin{bmatrix} \chi^{(1)T} \\ \chi^{(2)T} \\ \vdots \\ \chi^{(n)T} \end{bmatrix}$$

What is the value of sample 13 feature #5?

Feature Vector

Input matrix of size $\langle n, m \rangle$

 $x_5^{(13)}$

Data Representation

Data Representation

Pop Quiz #1

1 | MULTIPLE CHOICE

POINTS: 1 | 🖉 Edit 🚦

Below is an input matrix X with six samples and features. Following the notation discussed in class, what is sample's three feature vector?

1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24
25	26	27	28	29	30
31	32	33	34	35	36

A. 21

B. [3, 9, 15, 21, 27, 33]

C. [13, 14, 15, 16, 17, 18]

D. [4, 10, 16, 22, 28, 34]

Pop Quiz #1

1 | MULTIPLE CHOICE

POINTS: 1 | 🖉 Edit 🚦

Below is an input matrix X with six samples and features. Following the notation discussed in class, what is sample's three feature vector?

$x^{(1)}$	1	2	3	4	5	6
$\chi^{(2)}$	7	8	9	10	11	12
$\chi^{(3)}$	13	14	15	16	17	18
$x^{(4)}$	19	20	21	22	23	24
$\gamma(5)$	25	26	27	28	29	30
$\gamma^{(6)}$	31	32	33	34	35	36

A. 21

B. [3, 9, 15, 21, 27, 33]

C. [13, 14, 15, 16, 17, 18]

D. [4, 10, 16, 22, 28, 34]

Note

- Notation can change
- Samples are also represented as x_i or $x^{[i]}$
 - Make sure you understand the notation used in a book or paper
- Dimensions of the X matrix can be different
 - E.g., if $X = [x^{(1)}, x^{(2)}, ..., x^{(n)}]$, then, Y is a row vector.

Recap

- **Training example:** A row in the table representing the dataset. Synonymous to an observation, training record, training instance, training sample (in some contexts, sample refers to a collection of training examples)
- Feature: a column in the table representing the dataset. Synonymous to predictor, variable, input, attribute, covariate.
- **Targets/Labels:** What we want to predict. Synonymous to outcome, output, ground truth, response variable, dependent variable, (class) label (in classification).
- **Output/prediction:** use this to distinguish from targets; here, means output from the model.

Let's talk again about lines.

Parameters and Capacity

As we increase the number of parameters...

Points to take home:

- The computer tries multiple curve parameters to search for the parameter set that best fits the data.
 - Minimizes or maximizes an objective function
- The more parameters, the better we can fit the data... more capacity.

Numpy

https://www.numpy.org

Numpy (https://numpy.org/)

- General-purpose open-source array-processing library
- High-performance N-dimensional array objects
 - Optimized C code
- Comprehensive built-in functions and random generators
 - Statistics, linear algebra, Fourier transform, etc.
- Fundamental package for scientific computing in Python

Numpy

Install Documentation Learn Community About Us News Contribute English ~

The fundamental package for scientific computing with Python

LATEST RELEASE: NUMPY 2.0. VIEW ALL RELEASES

NumPy 2.0 released! 2024-06-17

Powerful N-dimensional arrays	Numerical computing tools	Open source
Fast and versatile, the NumPy vectorization, indexing, and broadcasting concepts are the de-facto standards of array computing today.	NumPy offers comprehensive mathematical functions, random number generators, linear algebra routines, Fourier transforms, and more.	Distributed under a liberal <u>BSD license</u> , NumPy is developed and maintained <u>publicly on GitHub</u> by a vibrant, responsive, and diverse <u>community</u> .
Interoperable NumPy supports a wide range of hardware and computing platforms, and plays well with distributed, GPU, and sparse array libraries.	Performant The core of NumPy is well-optimized C code. Enjoy the flexibility of Python with the speed of compiled code.	Easy to use NumPy's high level syntax makes it accessible and productive for programmers from any background or experience level.

https://numpy.org/

Scipy

Install Documentation Community About Us Contribute

Fundamental algorithms for scientific computing in Python

GET STARTED

SciPy 1.14.0 released! 2024-06-24

Fundamental algorithms

SciPy provides algorithms for optimization, integration, interpolation, eigenvalue problems, algebraic equations, differential equations, statistics and many other classes of problems.

Broadly applicable

The algorithms and data structures provided by SciPy are broadly applicable across domains.

Foundational

Extends NumPy providing additional tools for array computing and provides specialized data structures, such as sparse matrices and k-dimensional trees.

Performant

SciPy wraps highly-optimized implementations written in low-level languages like Fortran, C, and C++. Enjoy the flexibility of Python with the speed of compiled code.

Easy to use

SciPy's high level syntax makes it accessible and productive for programmers from any background or experience level.

Open source

Distributed under a liberal <u>BSD license</u>, SciPy is developed and maintained <u>publicly on GitHub</u> by a vibrant, responsive, and diverse <u>community</u>.

https://scipy.org/

Notebook Time

Next Lecture

 We will build our first machine learning pipeline/model with Scikit-Learn

