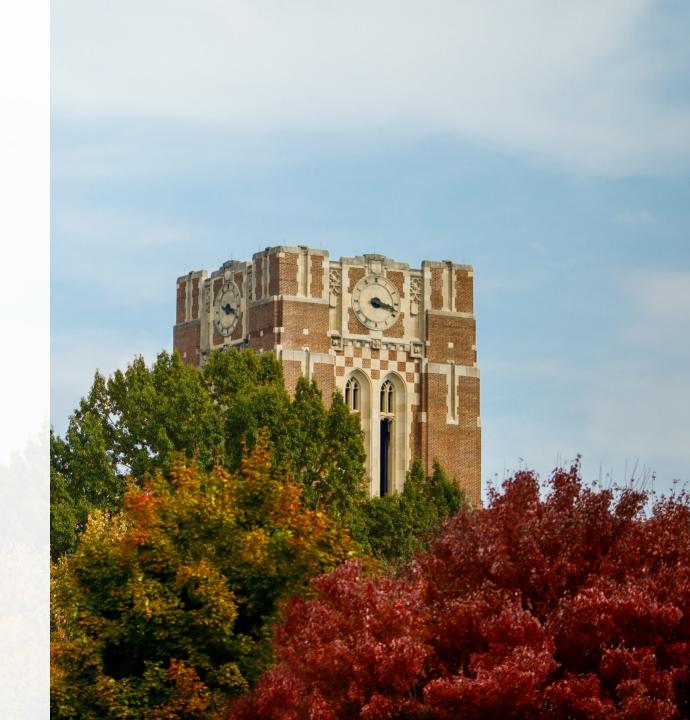
COSC 325: Introduction to Machine Learning


Dr. Hector Santos-Villalobos

Dr. Santos

Lecture 02: Machine Learning Motivation

If you are not registered in this section, please yield your seat to registered students.

Are you in the right place?

Course

- Course: COSC 325, Introduction to Machine Learning
- Pre-Requisites: ECE 313 or ECE 317 or MATH 323; and MATH 251 or MATH 257 with a grade of C or better.
- Recommended Background: Python Programming Language, Numpy, SciKit Learn

Logistics

- Location: MKB 524
- Lectures: Tuesday/Thursday: 11:20 am to 12:35 pm
- Canvas Link: https://utk.instructure.com/courses/206990

https://ttpoll.com/p/569627

Discord Server UTK Fall-24 COSC 325

Join @ https://discord.gg/DXpnvT9R

Class Announcements

Homework:

First homework available in Canvas

Exams:

Lectures:

Join Discord Server:

UTK Fall-24 COSC 325

https://discord.gg/DXpnvT9R

Quizzes:

The first quiz is due on Sunday.

Course Project:

- Instruction files will be available early next week.
- Form teams by 08/29. Otherwise, we will randomly assign you a team.
- Send your team details via Discord #team-creation channel.
- Students working in teams of two may be paired with a third student.

Today's Topics

What is Machine Learning?

Notation, Applications, and Tools

Last Lecture

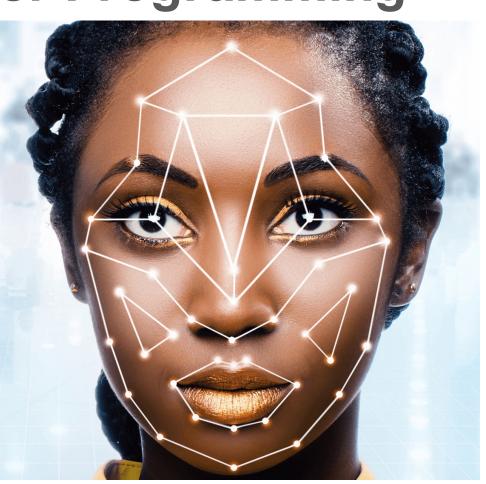
- Course overview
- Work hard and have fun
- We are here to learn

What is Machine Learning?

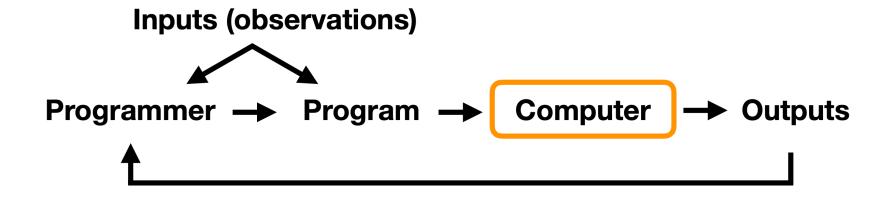
https://ttpoll.com/p/569627

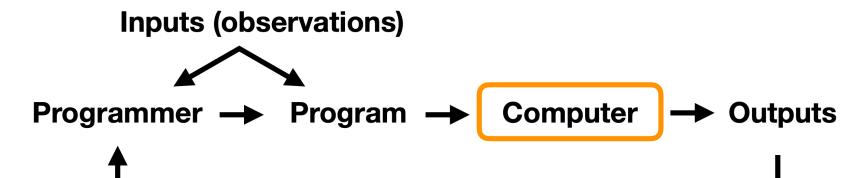
"Machine learning is the field of study that gives computers the ability to learn without being explicitly programmed."

— Arthur L. Samuel, Al pioneer, 1959

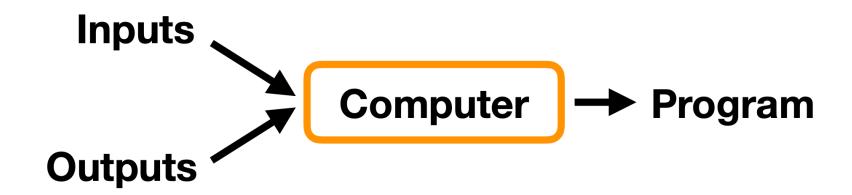

"...machine learning is a subcategory within the field of computer science which allows you to implement artificial intelligence. So, it's kind of a mechanism to get you to artificial intelligence."

-Rana el Kaliouby, CEO at Affectiva




Machine Learning vs Computer Programming

- Traditional Programming:
 - Algorithms are sequences of instructions that are carried out to transform an input into an output
 - Fundamentally, they are lists of instructions
- Machine Learning:
 - The list of instructions is *Learned* from data
 - Useful when the sequence of instructions is difficult to define
 - Examples
 - Facial recognition
 - Autonomous driving


Traditional Programming Paradigm

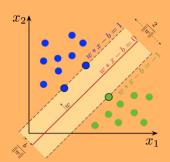
"Machine learning is the field of study that gives computers the ability to learn without being explicitly programmed."


— Arthur L. Samuel, Al pioneer, 1959

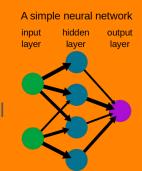
Al vs Machine Learning

Artificial General Intelligence

Computers "mimic" how humans learn.


Artificial Intelligence

Computers mimic human behavior.


Machine Learning

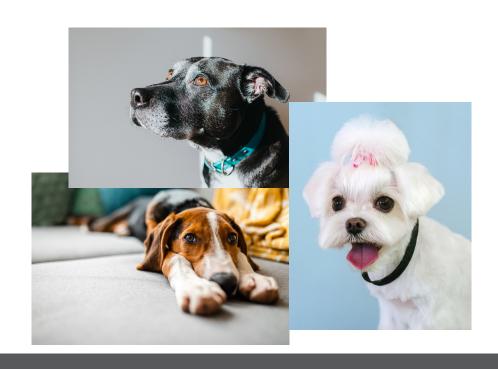
Ability to learn without explicit hand-made rules.

Deep Learning

Automated extraction of patterns/features from raw data using multi-layer neural networks.

Teaching computers how to learn a task directly from data.

Figure inspired on MIT 6.S191 course slide.


Memory vs Learning

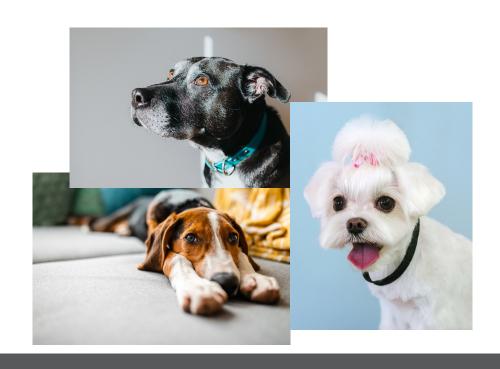
- What is an example of something that you memorize?
- What is an example of something that you learn?

Memory vs Learning

- What is an example of something that you memorize?
- What is an example of something that you learn?

1520 Middle Drive, Knoxville, Tennessee 37796

Generalization

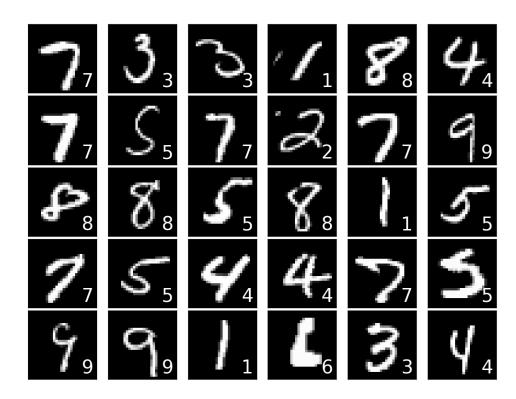

- A key component of "learning" is the ability to generalize
 - Take information that has been learned previously and apply it to new but related scenarios
- For a technique to be considered a machine learning approach, it *must* be able to generalize
- Thus, we must evaluate its ability to generalize

Memory vs Learning

- What is an example of something that you memorize?
- What is an example of something that you learn?

1520 Middle Drive, Knoxville, Tennessee 37796

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E." — Tom Mitchell, Professor at Carnegie Mellon University

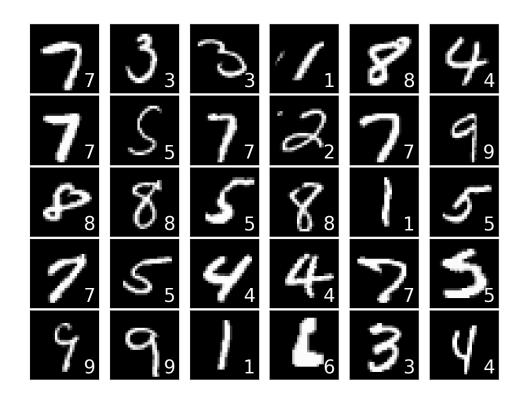


MNIST Images

• Task *T*:_____

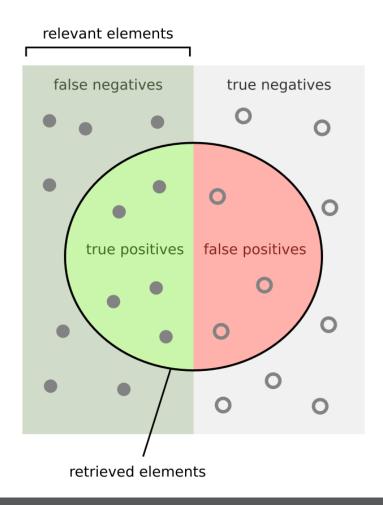
Performance measure P:

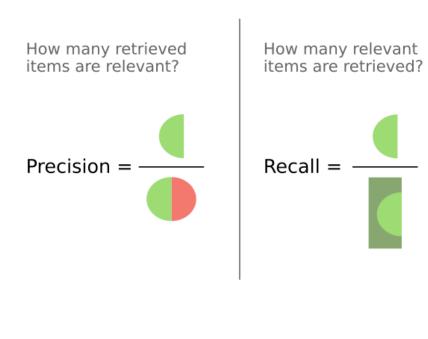
• Training experience *E*:



MNIST Images

• Task *T*:_____

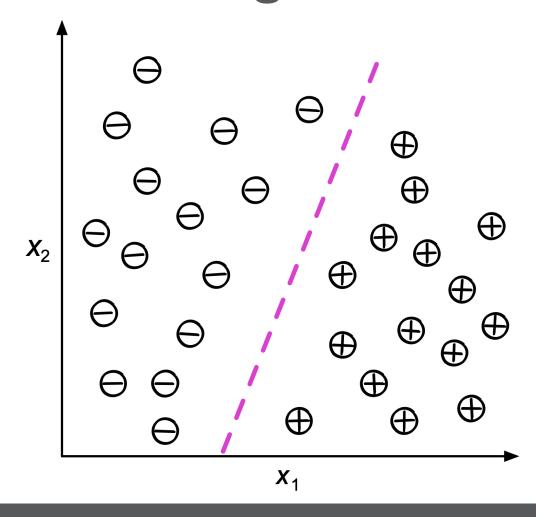

Performance measure P:


Training experience E:

Performance Metrics

Categories of Machine Learning

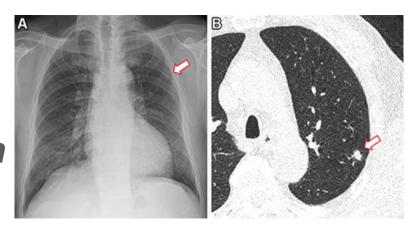
Categories of Machine Learning


Supervised Learning

> Labeled data

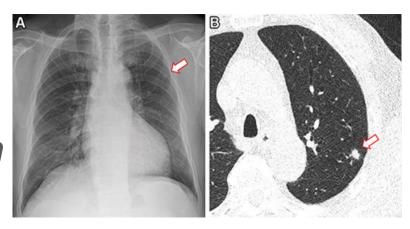
> Direct feedback

> Predict outcome/future


Supervised Learning: Classification

Binary Classification

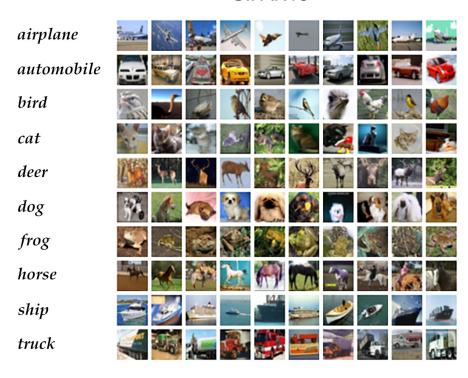
Determine whether a tumor is benign or malign


- Task:
- Features/Experience:
- Performance:

Binary Classification

Determine whether a tumor is benign or malign

- Task: Yes/No Predictions
- Features/Experience: Radius (mean of distances from the center to points on the perimeter), texture (standard deviation of gray-scale values), perimeter, area, smoothness (local variation in radius lengths), compactness (perimeter^2 / area 1.0), concavity (severity of concave portions of the contour), concave points (number of concave portions of the contour), symmetry, fractal dimension.
- Performance: Accuracy, Binary Cross Entropy, Precision, Recall



Multi-Class Classification

Assign object label name to image

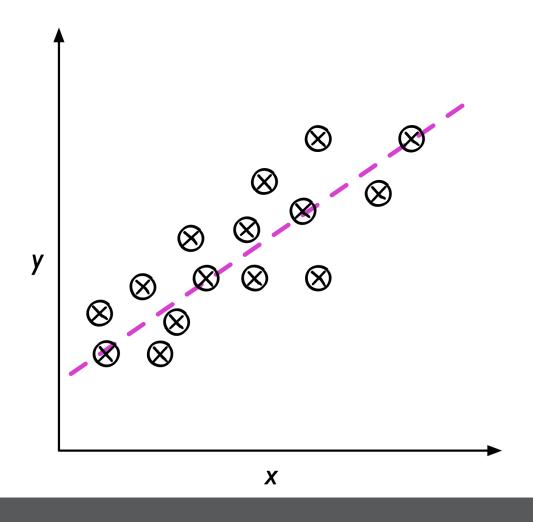
- Task:
- Features/Experience:
- Performance:

CIFAR10

Multi-Class Classification

Assign object label name to image

- Task: Select a label within a set of possible predictions (labels)
- Features/Experience: *pixel values**, color histogram, edge angle histogram, correlation filter response
- Performance: Precision, Recall, Accuracy, F1 Score


airplane
automobile
bird
cat
deer
dog
frog
horse
ship
truck

CIFAR10

*NNs

Supervised Learning: Regression

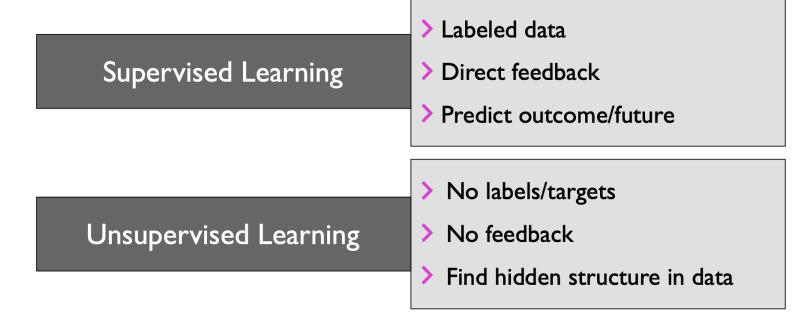
Examples:

- Market value
- Time to failure
- Age
- Weight
- Size
- Location

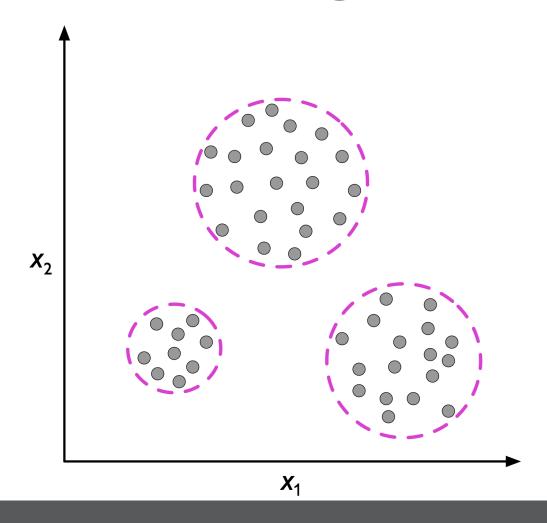
Regression Example

Quantitative measure of diabetes disease progression one year after baseline.

- Task:
- Features/Experience:
- Performance:



Regression Example


Quantitative measure of diabetes disease progression one year after baseline.

- Task: Predict a real value
- Features/Experience: Age in years, sex, BMI (body mass index), average blood pressure, total serum cholesterol, low-density lipoproteins, high-density lipoproteins, total cholesterol / HDL, possibly log of serum triglycerides level, and blood sugar level
- Performance: MSE between predicted and true values

Categories of Machine Learning

Unsupervised Learning: Clustering

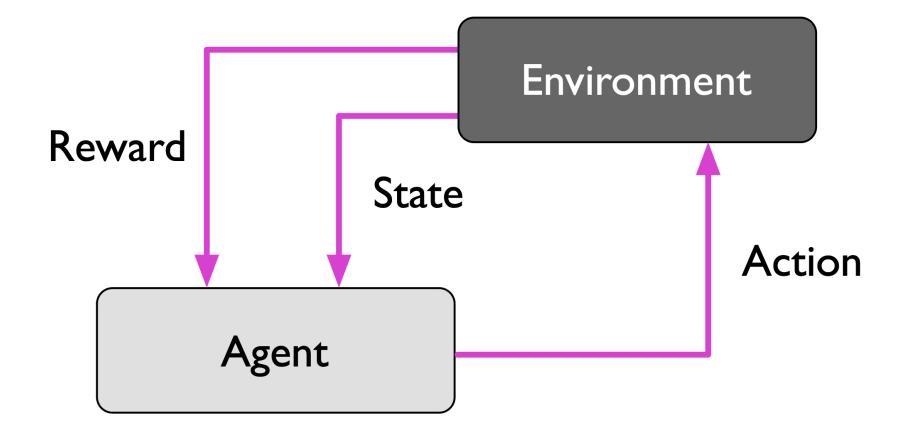
Ranking Example

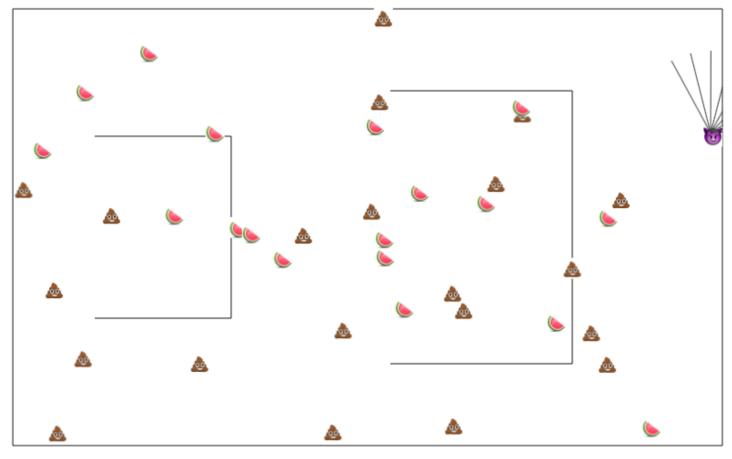
Return the top 10 most similar movies to a query movie

- Task: Compute relevance list
- Features/Experience:
- Performance:

Ranking Example

Return the top 10 most similar movies to a query movie


- Task: Compute relevance list
- Features/Experience: title, genre, year, synopsis, language, director, starring actors, studio, content advisory, maturity rating, [customer watch history].
- Performance: Recall@k from past user behavior

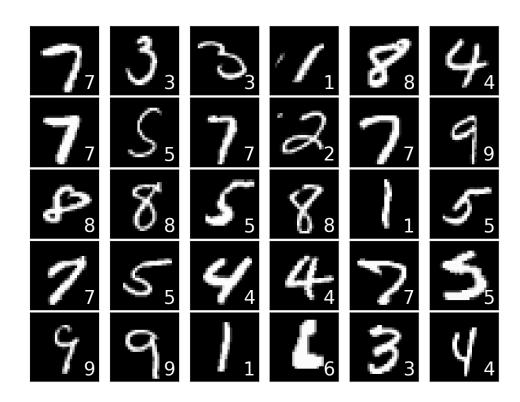

Categories of Machine Learning

Labeled data Supervised Learning Direct feedback > Predict outcome/future No labels/targets Unsupervised Learning No feedback Find hidden structure in data Decision process Reinforcement Learning Reward system Learn series of actions

Reinforcement Learning

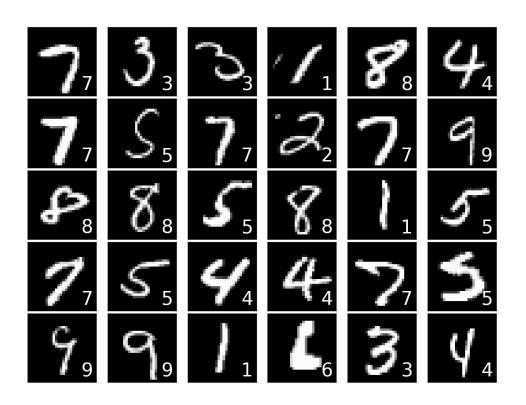
Example

https://projects.rajivshah.com/rldemo/

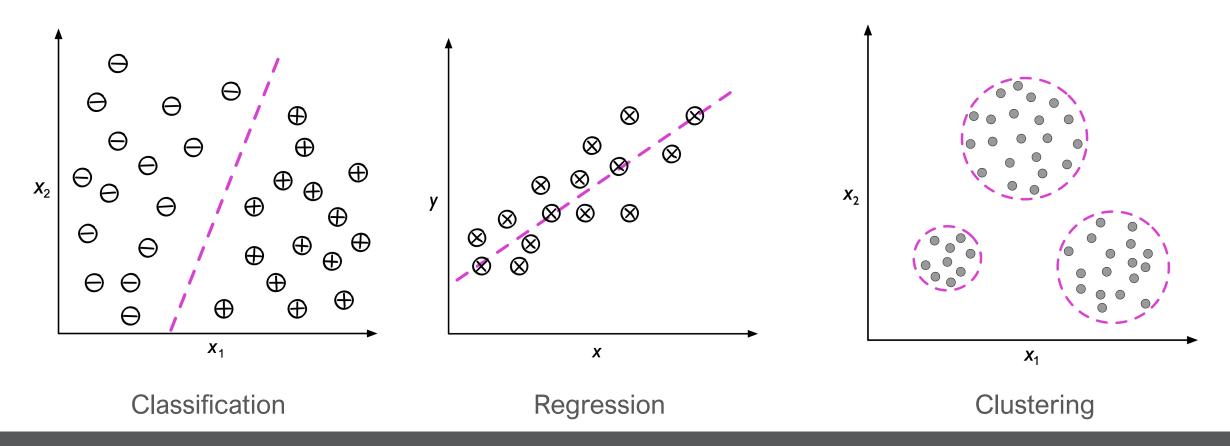


MNIST Images (Pop Quiz)

• Task *T*:_____


Performance measure P: ______

• Training experience *E*: _____



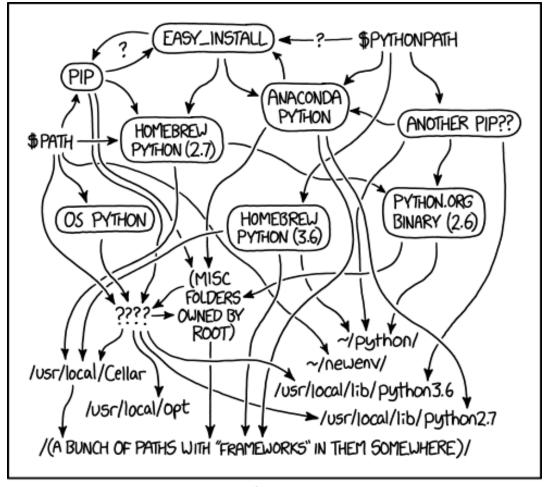
MNIST Images (Pop Quiz)

- Task T: Multi-class labeling
- Performance measure *P*: Accuracy, precision, etc.
- Training experience *E*: Edge histogram, correlation filter response, etc.

What do these plots have in common?

https://ttpoll.com/p/569627

Python


Why Python?

- Extensive Libraries and Frameworks: Rich ecosystem with tools like TensorFlow, PyTorch, and Scikit-Learn simplifies complex algorithm implementation.
- Ease of Learning and Use: Clear, readable syntax accelerates learning and allows rapid prototyping.
- Active Community and Support: Vast, active community offers extensive documentation, tutorials, and forums for support.
- Versatility and Integration: Seamlessly integrates with other languages and platforms, supporting various programming paradigms.
- Data Handling Capabilities: Efficient data structures and functions for handling large datasets through libraries like NumPy and Pandas.
- **Visualization Tools:** Powerful libraries like Matplotlib and Seaborn aid in data exploration and result presentation.
- Industry Adoption and Support: Widespread use in academia and industry ensures ongoing investment and support.

Setting up Python

- Python 3
- Environments:
 - Anaconda
 - PyEnv
 - Virtual Environments
- Pip
- Jupyter Notebooks
- Git

MY PYTHON ENVIRONMENT HAS BECOME SO DEGRADED THAT MY LAPTOP HAS BEEN DECLARED A SUPERFUND SITE.

Source: https://xkcd.com/1987/

Anaconda

- Comprehensive Package Management: Anaconda includes over 7,500 open-source pre-installed packages and simplifies the installation and management of additional packages through Conda, ensuring compatibility and reducing dependency conflicts.
- Environment Management: Easily create, manage, and switch between multiple isolated environments, allowing for clean and reproducible project setups without interfering with system-wide settings.
- Integrated Development Environment: Comes with Jupyter Notebook and Spyder, providing powerful, interactive tools for developing and testing code, data analysis, and visualization.
- Cross-Platform Support: Compatible with Windows, macOS, and Linux, ensuring consistent development environments across different operating systems.
- Enhanced Data Science Tools: Bundles essential libraries for machine learning, data analysis, and scientific computing (e.g., NumPy, Pandas, SciPy, and Matplotlib), streamlining the setup process for data science projects.

https://ttpoll.com/p/569627

Important!

Don't mess with your operating system's Python installation.

```
# install pyenv requirements
brew install openssl readline sqlite3 xz zlib
# install pyenv (add to PATH)
brew install pyenv
# list available python versions
pyenv versions
```

```
hsantosv@LAP513 ~ % pyenv versions

* system (set by /Users/hsantosv/.pyenv/version)
[hsantosv@LAP513 ~ % where python3
/opt/homebrew/bin/python3
/usr/bin/python3
```



```
# install pyenv requirements
brew install openssl readline sqlite3 xz zlib
# install pyenv (add to PATH)
                                                    Make sure you tell your
brew install pyenv —
                                                    OS where to find these
                                                           tools.
# list available python versions
pyenv versions
        hsantosv@LAP513 ~ % pyenv versions
          system (set by /Users/hsantosv/.pyenv/version)
        hsantosv@LAP513 ~ % where python3
        /opt/homebrew/bin/python3
        /usr/bin/python3
```

```
# install python version 3.12.0
pyenv install 3.12.0

# list available python versions
pyenv versions
```

```
hsantosv@LAP513 ~ % pyenv versions

* system (set by /Users/hsantosv/.pyenv/version)

3.12.0
```



```
# install separate python version 3.12.5
pyenv install 3.12.5

# set default version to newly installed 3.12.5
pyenv global 3.12.5

# list available python versions
pyenv versions

hsantosv@LAP513 ~ % pyenv versions

system
3.12.0
* 3.12.5 (set by /Users/hsantosv/.pyenv/version)
```

Python Environment

- Good resource: https://realpython.com/python-virtual-environments-a-primer/
- Manage the libraries, python version, etc. for your project
- You can use conda, venv, or pyenv-vritualenv

```
# install pyenv-virtualenv plugin
brew install pyenv-virtualenv
```

Python Environment

```
# create new virtualenv
# (e.g. pyenv virtualenv <python-version> <env-name>)
pyenv virtualenv 3.12.5 test_project

# activate the virtualenv
pyenv activate test_project

# deactivate the virtualenv
pyenv deactivate test_project

# list all available virtual environments
pyenv virtualenvs
```

Python Environment

```
# create new virtualenv
# (e.g. pyenv virtualenv <python-version> <env-name>)
pyenv virtualenv 3.12.5 test project
                                      hsantosv@LAP513 .pyenv % pyenv virtualenvs
# activate the virtualenv
                                       3.12.0/envs/ml_clean_config (created from /Users/hsantosv/.pyenv/versions/3.12.0)
                                       3.12.5/envs/cosc325_ml_config (created from /Users/hsantosv/.pyenv/versions/3.12.5)
pyenv activate test project
                                       3.12.5/envs/cosc525 dl config (created from /Users/hsantosv/.pyenv/versions/3.12.5)
                                       3.12.5/envs/test project (created from /Users/hsantosv/.pyenv/versions/3.12.5)
                                       cosc325 ml config (created from /Users/hsantosv/.pyenv/versions/3.12.5)
# deactivate the virtualenv
                                       cosc525_dl_config (created from /Users/hsantosv/.pyenv/versions/3.12.5)
                                       ml_clean_config (created from /Users/hsantosv/.pyenv/versions/3.12.0)
pyenv deactivate test project
                                       test_project (created from /Users/hsantosv/.pyenv/versions/3.12.5)
# list all available virtual environments
pyenv virtualenvs
```

Local Python Environment

```
# Set a directorate environment to specific Python Environment cd local_directory pyenv local cosc325_ml_config
```

```
[hsantosv@LAP513 Development %
[hsantosv@LAP513 Development % cd /Users/hsantosv/Library/CloudStorage/OneDrive-UniversityofT
ennessee/04-Teaching/UTK-TCH-COSC-325/Development
[hsantosv@LAP513 Development % pyenv local cosc325_ml_config
[(cosc325_ml_config) hsantosv@LAP513 Development % cd ,,
```


PIP COSC325 Libraries

```
# install jupyterlab into your virtual environment
pip install jupyterlab
# install Numpy for, Matlab-like, matrix multiplication capabilities
pip install numpy
pip install scipy #optional: expands numpy functions
# install Pandas for manipulation of tabulated data and seaborn for pandas-supported plots
pip install pandas
pip install seaborn
# install Scikit-Learn for most classical machine learning needs
pip install scikit-learn
# install matplotlib for general generation of graphs/plots
pip install matplotlib
# install PyTensor (formaly Theano) to optimize matrix computations (e.g., use of GPUs)
pip install pytensor
```

Saving/Exporting Your Environment

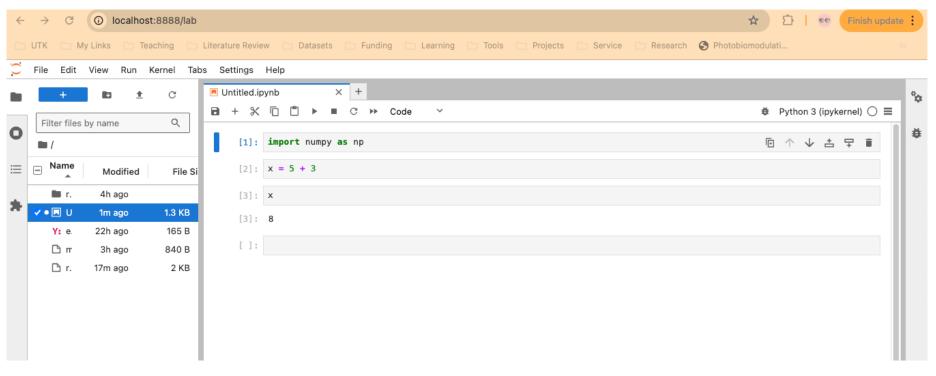
```
pip freeze > requirements.txt

# EXPORT
# Activate environment
pyenv activate <env_name>

# import environment libraries from file
(<env_name>) $ pip install -r path/to/requirements.txt
```

save environment libraries to file

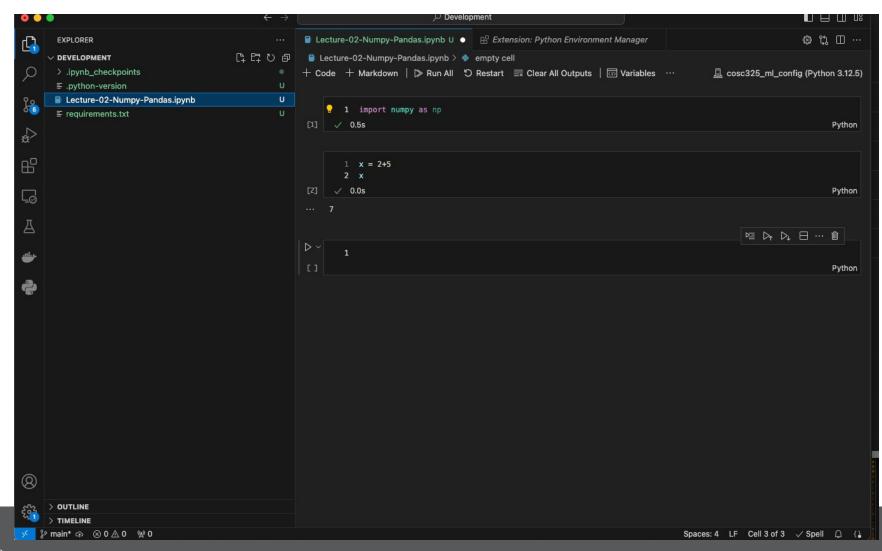
Note that it does not save the Python version.


```
nvio==4.4.0
argon2-cffi==23.1.0
argon2-cffi-bindings==21.2.0
arrow==1.3.0
asttokens==2.4.1
async-lru==2.0.4
babel==2.16.0
beautifulsoup4==4.12.3
certifi==2024.7.4
charset-normalizer==3.3.2
cons==0.4.6
decorator==5.1.1
defusedxml==0.7.1
ilelock==3.15.4
11 = = 0.14.0
ttpcore==1.0.5
python==8.26.0
soduration==20.11.0
 son5==0.9.25
sonpointer==3.0.0
sonschema==4.23.0
 sonschema-specifications==2023.12.1
```

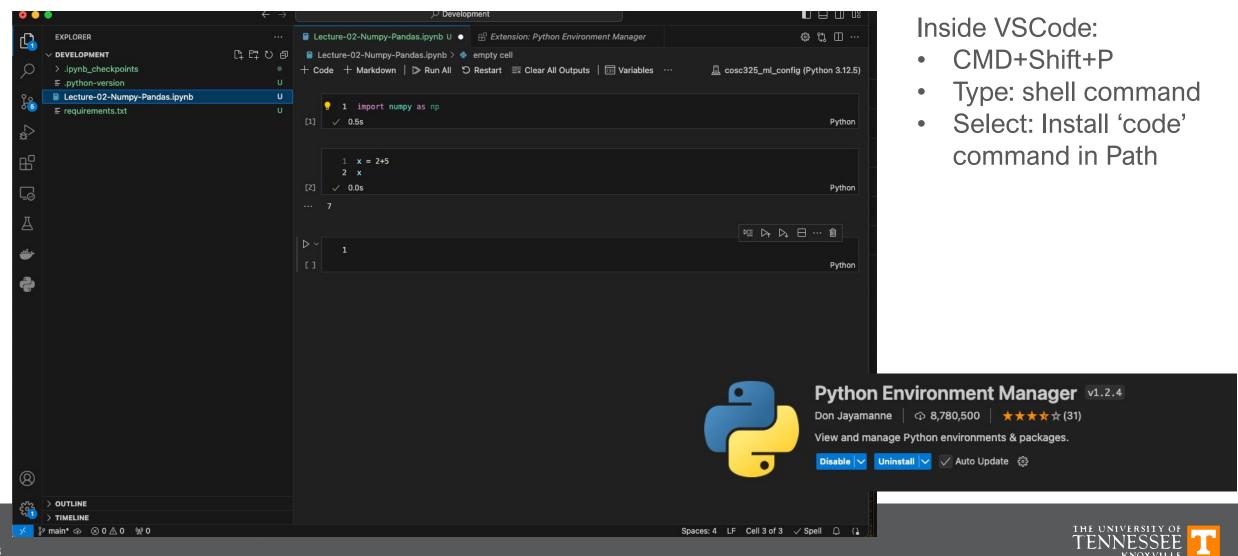
```
ipyter-events==0.10.0
upvter-lsp==2.2.5
upyter client==8.6.2
upyter core==5.7.2
upyter server==2.14.2
upyter server terminals==0.5.3
upyterlab==4.2.4
upyterlab pygments==0.3.0
upyterlab_server==2.27.3
iwisolver==1.4.5
ogical-unification==0.4.6
MarkupSafe==2.1.5
natplotlib==3.9.2
natplotlib-inline==0.1.7
niniKanren==1.0.3
bclient==0.10.0
bconvert==7.16.4
backaging==24.1
andas==2.2.2
andocfilters==1.5.1
arso==0.8.4
expect==4.9.0
oillow==10.4.0
rometheus client==0.20.0
rompt_toolkit==3.0.47
sutil==6.0.0
typrocess==0.7.0
ure eval==0.2.3
vcparser==2.22
 gments==2.18.0
```


Jupyter Notebook

Open jupyter server
jupyter lab


Jupyter Notebooks

- Interactive Development: Jupyter Notebooks allow real-time code execution and visualization, enabling immediate feedback and iterative development, which is ideal for data exploration and analysis.
- Rich Media Support: Integrates code, text, images, and visualizations in a single document, enhancing documentation and presentation of data analysis and research findings.
- Collaborative Features: Facilitates collaboration by enabling easy sharing and version control of notebooks, allowing multiple users to work on the same document seamlessly.
- Wide Language Support: Supports over 40 programming languages, including Python, R, and Julia, making it versatile for various data science and computational tasks.



pip install jupyterlab

VSCode

VSCode

Other IDEs

- PyCharm [Local]
 - https://www.jetbrains.com/pycharm/
- Google Colab
 - <u>https://colab.research.google.com/</u>
- Anaconda Notebooks
 - https://anaconda.cloud/code-in-the-cloud
- Kaggle
 - https://www.kaggle.com/code
- JupyterLab
 - <u>https://jupyter.org/try-jupyter/lab/</u>

Python Basics

- General and lambda functions
 - https://www.geeksforgeeks.org/python-functions/
- Classes
 - https://www.geeksforgeeks.org/python-classes-and-objects/
- Loops and how to iterate over lists
 - https://www.geeksforgeeks.org/loops-in-python/
- Data types, such as Lists, Tuples, Dictionaries
 - https://www.geeksforgeeks.org/python-lists/
 - https://www.geeksforgeeks.org/python-tuples/
 - https://www.geeksforgeeks.org/python-dictionary/

Python Basics

- General and lambda functions
 - https://www.geeksforgeeks.org/python-functions/
- Classes
 - https://www.geeksforgeeks.org/python-classes-and-objects/
- Loops and how to iterate over lists
 - https://www.geeksforgeeks.org/loops-in-python/
- Data types, such as Lists, Tuples, Dictionaries
 - https://www.geeksforgeeks.org/python-lists/
 - https://www.geeksforgeeks.org/python-tuples/
 - https://www.geeksforgeeks.org/python-dictionary/

https://www.geeksforgeeks. org/python-differencebetween-list-and-tuple/

Lecture Recap

- Machine learning
 - A subfield of artificial intelligence
 - Models need to generalize (i.e., learn)
 - Task, Experience, Performance
 - Different learning categories: supervised, self-supervised, and reinforcement.
- Programming
 - Python: flexible, efficient, collaborative, powerful
 - Always work from a dockerized or virtual environment
 - Practice

Next Week

- Scientific computing with Python
 - Deep dive for Numpy, Pandas, and Scikit-Learn libraries
- Bring your laptops with Python environment ready.
 - Check tutorial in Canvas

