{ "cells": [ { "cell_type": "markdown", "id": "3feddd85-239d-443c-8e37-7d15e5c45483", "metadata": {}, "source": [ "# **Homework # 2: Linear and Logistic Regression**\n", "\n", "## Overview\n", "This notebook is designed to guide you through the fundamental concepts of Linear and Logistic Regression. By the end of this homework, you will have a solid understanding of how to implement these algorithms from scratch and how to visualize the results.\n", "\n", "### **Learning Objectives:**\n", "\n", "- **Linear Regression**\n", "\n", " Understand the theoretical background\n", " Implement the cost function\n", " Visualize the linear fit\n", " Analyze the relationship between parameters and cost\n", "
\n", "\n", "- **Logistic Regression**\n", "\n", " Grasp the theoretical foundations\n", " Implement the sigmoid function\n", " Develop the cost function\n", " Optimize parameters\n", " Visualize the decision boundary\n", "\n", "### **Structure**\n", "\n", "- [**Part 1: Linear Regression (40% of total)**](#1)\n", " - [1.1. Setting up the Environment](#1.1)\n", " - [1.2. Dataset Loading and Visualization](#1.2)\n", " - [1.3. Implementation of the Cost Function](#1.3)\n", " - [1.4. Manual Adjustment of Parameters](#1.4)\n", " - [1.5. Estimating Optimal Parameters](#1.5)\n", " - [1.6. Visualizing the Linear Fit](#1.6)\n", "
\n", "\n", "- [**Part 2: Logistic Regression (40% of total)**](#2)\n", " - [2.1. Setting up the Environment](#2.1)\n", " - [2.2. Dataset Loading and Visualization](#2.2)\n", " - [2.3. Splitting the Data and Explanation of Features](#2.3)\n", " - [2.4. Implementation of the Sigmoid Function](#2.4)\n", " - [2.5. Implementation of the Cost Function](#2.5)\n", " - [2.6. Complete the Cost Function Code](#2.6)\n", " - [2.7. Optimizing Parameters](#2.7)\n", " - [2.8. Visualizing the Decision Boundary](#2.8)\n", " - [2.9. Evaluating the Model with a Confusion Matrix](#2.9)\n", " - [2.10. Generating a Classification Report](#2.10)\n", "
\n", "\n", "- [**Part 3: Knowledge Check (20% of total)**](#3)\n", "\n", "\n", "\n", "### **Instructions**\n", "\n", "- Read through each section carefully\n", "- Complete the code in areas marked `###YOUR CODE STARTS HERE` and `###YOUR CODE ENDS HERE`\n", "- Run all code cells to see plots and results\n", "- Ask for help if needed, but avoid code sharing\n", "- Utilize online resources responsibly\n", "- Ensure you have necessary libraries installed (numpy, pandas, matplotlib)\n", "- Pay attention to the theory sections to understand the concepts behind the implementations\n", "- For more information click on the `Task Hints` and `Expected Hints` above and below each task.\n", "\n", "### **Getting Help**\n", "\n", "- If you encounter issues or need assistance, here is the preferred approach to find help:\n", "\n", " 1. **Search Online**: Begin by using online resources and forums to find answers to your questions. Make sure to solve problems on your own as much as possible without directly copying code.\n", " \n", " 2. **Consult Peers**: If online resources do not resolve your issue, you may reach out to fellow students for help. Please remember that sharing actual code is prohibited.\n", " \n", " 3. **Class Discord**: If peer consultation doesn't suffice, post your query in the class Discord to seek further assistance.\n", " \n", " 4. **Contact the TA**: If your issue still persists after exploring the above steps, reach out to the Teaching Assistant (TA).\n", " \n", " 5. **Instructor Assistance**: If you still require help and the TA has not been able to resolve your issue, you should contact the instructor.\n", "\n", "\n", "## Tutorials and Documentation Links For Help\n", "\n", "**Here are the links to the tutorials:**\n", "\n", "- [NumPy Tutorial](https://github.com/CuriousNeuralNerd/Tutorials/blob/fbdeb171ed16958e7571df0f1272c68ce3f4d3ab/numpy_basics.ipynb)\n", "- [pandas Tutorial](https://github.com/CuriousNeuralNerd/Tutorials/blob/fbdeb171ed16958e7571df0f1272c68ce3f4d3ab/pandas_basics.ipynb)\n", "- [Matplotlib Tutorial](https://github.com/CuriousNeuralNerd/Tutorials/blob/fbdeb171ed16958e7571df0f1272c68ce3f4d3ab/matplotlib_basics.ipynb)\n", "- [scikit-learn Tutorial](https://github.com/CuriousNeuralNerd/Tutorials/blob/fbdeb171ed16958e7571df0f1272c68ce3f4d3ab/scikit_learn_basics.ipynb)\n", "- [Linear Regression Tutorial](https://github.com/CuriousNeuralNerd/Tutorials/blob/fbdeb171ed16958e7571df0f1272c68ce3f4d3ab/Linear_Regression_Tutorial.ipynb)\n", "- [Logistic Regression Tutorial](https://github.com/CuriousNeuralNerd/Tutorials/blob/fbdeb171ed16958e7571df0f1272c68ce3f4d3ab/Logistic_Regression_Tutorial.ipynb)\n", "\n", "\n", "**Here are the links to the official documentation for the libraries:**\n", "\n", "- [NumPy Documentation](https://numpy.org/doc/stable/user/absolute_beginners.html)\n", "- [pandas Documentation](https://pandas.pydata.org/docs/user_guide/index.html#user-guide)\n", "- [Matplotlib Documentation](https://matplotlib.org/stable/users/explain/quick_start.html)\n", "- [SciPy Documentation](https://scipy.github.io/devdocs/tutorial/index.html)\n", "- [scikit-learn Documentation](https://scikit-learn.org/stable/)\n", "- [Seaborn Documentation](https://seaborn.pydata.org/tutorial/introduction.html)" ] }, { "cell_type": "markdown", "id": "c60fd2b2-2c82-415c-af31-ada3ac3ec869", "metadata": {}, "source": [ "### **Grading Rubric**\n", " \n", "| **Part** | **Description** | **Weight** |\n", "|----------|-------------------------------|------------|\n", "| 1 | Linear Regression | **40%** |\n", "| 2 | Logistic Regression | **40%** |\n", "| 3 | Knowledge Check | **20%** |\n", "\n", "\n", "## Submission Instructions\n", "\n", "To complete your submission for this homework, please follow these steps:\n", "\n", "1. **Save the Completed Notebook**: Ensure that all your code and written answers are finalized, then save the `.ipynb` file.\n", "2. **Export to PDF**: Additionally, export or save your completed notebook as a `PDF` file.\n", "3. **Submit Both Files**: Turn in both the `.ipynb` file and the `PDF` file. Make sure that both files are clearly labeled and include your Net ID (`HW_x_NetID`)." ] }, { "cell_type": "markdown", "id": "672a15df-3d28-4a2b-973a-8746b2696e34", "metadata": {}, "source": [ "Good luck and enjoy exploring Linear and Logistic Regression!\n", "\n", "## Missing libraries?\n", "\n", "Uncomment and run the cell for any of the libraries you are missing." ] }, { "cell_type": "markdown", "id": "1784669b-6c2e-48c4-a989-537bd6d83b9a", "metadata": {}, "source": [ "**NumPy**" ] }, { "cell_type": "code", "execution_count": null, "id": "0515edd5-d8e7-4319-99ac-e83a8b8eb12b", "metadata": {}, "outputs": [], "source": [ "#!pip install numpy" ] }, { "cell_type": "markdown", "id": "48e909e9-8b1f-4807-98b1-042fe539e68e", "metadata": {}, "source": [ "**pandas**" ] }, { "cell_type": "code", "execution_count": null, "id": "0ca4050d-ddb0-44b9-bccc-d38f0cd472d1", "metadata": {}, "outputs": [], "source": [ "#!pip install pandas" ] }, { "cell_type": "markdown", "id": "6764f163-444b-4131-bc97-e7aa17792a9c", "metadata": {}, "source": [ "**Matplotlib**" ] }, { "cell_type": "code", "execution_count": null, "id": "6ee439fe-ebc3-44ff-9a45-5230eab7f768", "metadata": {}, "outputs": [], "source": [ "#!pip install matplotlib" ] }, { "cell_type": "markdown", "id": "5982011f-9e8a-4621-8943-d8f0db3e5e28", "metadata": {}, "source": [ "**SciPy**" ] }, { "cell_type": "code", "execution_count": null, "id": "55fb1311-b447-4f96-84ab-14bee9a46ed8", "metadata": {}, "outputs": [], "source": [ "#!pip install scipy" ] }, { "cell_type": "markdown", "id": "96fd89ad-fe30-4f95-b180-ee13ed6c4155", "metadata": {}, "source": [ "**Scikit-Learn**" ] }, { "cell_type": "code", "execution_count": null, "id": "19a96f7c-1ca0-4e1e-b72b-844c8ed6d2c0", "metadata": {}, "outputs": [], "source": [ "#!pip install scikit-learn" ] }, { "cell_type": "markdown", "id": "32e39764-74ba-4745-a972-9b53e636af5c", "metadata": {}, "source": [ "**Seaborn**" ] }, { "cell_type": "code", "execution_count": null, "id": "96024d5b-a23c-404a-82a0-b302cbcf9e8d", "metadata": {}, "outputs": [], "source": [ "#!pip install seaborn" ] }, { "cell_type": "markdown", "id": "a3c65c68-8d5f-44e3-8022-097b74fc0626", "metadata": {}, "source": [ "\n", "# **Part 1: Linear Regression**\n", "\n", "### Worth: 40%" ] }, { "cell_type": "markdown", "id": "4bfe8d6e-573a-45ae-a5f9-8c6cb8f5135a", "metadata": {}, "source": [ "### Introduction to Linear Regression\n", "Linear Regression is a foundational statistical method that allows us to model relationships between variables. In this lab, we'll explore how to build a simple linear regression model that predicts house prices based on house sizes.\n", "\n", "\n", "### 1.1. Setting up the Environment\n", "Let's load the necessary libraries and set up our environment for the rest of the lab.\n" ] }, { "cell_type": "code", "execution_count": 1, "id": "01c1c83f-d00e-421c-8c05-d4b363850b6b", "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "from scipy.optimize import minimize" ] }, { "cell_type": "markdown", "id": "a4dc73cc-c53d-434a-82b1-fb89678d21ce", "metadata": {}, "source": [ "\n", "### 1.2. Dataset Loading and Visualization\n", "We will begin by loading our dataset and visualizing the relationship between house size and price." ] }, { "cell_type": "code", "execution_count": 19, "id": "bb90feb9-6198-4ee2-9315-bd09e7053fbf", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Number of Tennessee properties after cleaning: 2640\n", "Columns in the dataset: ['brokered_by', 'status', 'price', 'bed', 'bath', 'acre_lot', 'street', 'city', 'state', 'zip_code', 'house_size', 'prev_sold_date']\n", " brokered_by price bed bath acre_lot \\\n", "count 2640.000000 2.640000e+03 2640.000000 2640.000000 2454.000000 \n", "mean 68239.768561 4.055739e+05 3.196212 2.570455 0.793223 \n", "std 28513.014238 3.263594e+05 0.894250 1.044101 6.673927 \n", "min 102.000000 4.490000e+04 1.000000 1.000000 0.010000 \n", "25% 50640.500000 2.379000e+05 3.000000 2.000000 0.160000 \n", "50% 83146.000000 3.249000e+05 3.000000 2.000000 0.250000 \n", "75% 88990.000000 4.799000e+05 4.000000 3.000000 0.440000 \n", "max 109987.000000 5.200000e+06 8.000000 10.000000 306.830000 \n", "\n", " street zip_code house_size \n", "count 2.640000e+03 2640.000000 2640.000000 \n", "mean 1.057099e+06 37922.095076 2075.400000 \n", "std 5.741161e+05 7.419471 1086.973793 \n", "min 1.952900e+04 37902.000000 336.000000 \n", "25% 5.332722e+05 37918.000000 1320.000000 \n", "50% 1.192176e+06 37921.000000 1820.500000 \n", "75% 1.578688e+06 37931.000000 2589.000000 \n", "max 1.996419e+06 37938.000000 14093.000000 \n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA9wAAAK9CAYAAADWj2RWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAADDBUlEQVR4nOzdeXxkZZn3/++pqqSyp5ekO02nN5re2RoEW9kVhEZUkBFQfAZEx9Efio6P8wDjzAhuqKij6Izj6AyKo4ILiyAKsm9ig3RLQ6cXaLo7vSfpTiWpJJVU1fn9cZ1KKkklqaTrpLJ83q9XXiG13nWqOuR7rvu+bsd1XVcAAAAAACCnAvkeAAAAAAAAkxGBGwAAAAAAHxC4AQAAAADwAYEbAAAAAAAfELgBAAAAAPABgRsAAAAAAB8QuAEAAAAA8AGBGwAAAAAAHxC4AQAAAADwAYEbAIAMduzYIcdx9OMf/7jnsptuukmO4/S53cKFC3X11VeP7eCgq6++WgsXLsz3MCYcx3F000035XsYADBlELgBYIJqa2vT5z//eV1wwQWaMWPGgHA4nEcffVTXXHONli5dqpKSEh199NH6yEc+on379h3RuBYuXKiLLrpowOU//elPFQwGdcEFF6izs/OInmMyO/vss3XsscdmvC51EuAb3/jGGI8qt3784x/LcZyer6KiIi1dulSf+MQndODAgXwPb0J65plntHbtWs2dO1dFRUWaP3++3vWud+nnP/95vocGAFNaKN8DAACMTmNjo77whS9o/vz5OuGEE/TEE0+M6P7XX3+9Dh06pPe9731asmSJtm/fru9973t64IEHtGHDBtXU1ORsrD/72c909dVX69xzz9W9996roqKinD22XxYsWKCOjg4VFBTkeyiT1he+8AUtWrRInZ2deuaZZ/T9739fDz74oF555RWVlJQMed8f/vCHSiaTYzTS8e1Xv/qVLr/8cp144on61Kc+penTp+uNN97QU089pR/+8If6wAc+0HPbjo4OhUL8+QcAY4XfuAAwQc2ZM0f79u1TTU2NXnzxRZ1yyikjuv+3vvUtnX766QoEeic7XXDBBTrrrLP0ve99T1/60pdyMs4777xTV111ld72trfpvvvumxBhW1JP5RX+Wbt2rd70pjdJkj7ykY9o5syZ+ta3vqX77rtP73//+zPeJxqNqrS0lBMhaW666SatXLlSzz//vAoLC/tcd/DgwT4/85kGgLHFlHIAmKDC4fARVaHPPPPMPmE7ddmMGTNUV1fX5/LGxkZt3rxZ7e3tI3qOX/7yl/rgBz+os88+W7/97W/7/LGfPj36v/7rv7R48WKFw2GdcsopeuGFFwY81mOPPaYzzjhDpaWlmjZtmt7znvf0Geftt98ux3H0P//zP33u95WvfEWO4+jBBx9Ud3e3ZsyYoQ996EMDHr+lpUVFRUX67Gc/22d8I5mmn9Lc3KxPf/rTmjdvnsLhsI455hh97Wtf860iu337dr3vfe/TjBkzVFJSojVr1uh3v/tdn9ukpnHv2LGjz+VPPPGEHMfpM0Ni27ZtuvTSS1VTU6OioiLV1tbqiiuuUCQS6XPf//3f/9XJJ5+s4uJizZgxQ1dccYXq6+tH/Tre9ra3SZLeeOMNSbZOu6ysTK+//rouvPBClZeX68orr+y5rv8a7mQyqe985zs67rjjVFRUpOrqal1wwQV68cUXRzzubI9Buk984hMqKyvL+O/k/e9/v2pqapRIJCRJL774os4//3xVVVWpuLhYixYt0jXXXDOyA+Z5/fXXdcoppwwI25I0a9asPj+nr+FOfcYH+0r35z//WRdccIEqKytVUlKis846S88+++yoxgsAUwkVbgBAj7a2NrW1tamqqqrP5d/73vd088036/HHH9fZZ5+d1WP95je/0ZVXXqkzzzxT999/v4qLizPe7uc//7laW1v193//93IcR1//+tf13ve+V9u3b++pYj7yyCNau3atjj76aN10003q6OjQd7/7XZ122ml66aWXtHDhQn3oQx/S3Xffrc985jM677zzNG/ePG3cuFE333yzPvzhD+vCCy+UJF1yySW6++679YMf/KBPQLn33nsVi8V0xRVXjOLI9Wpvb9dZZ52lPXv26O///u81f/58Pffcc7rxxhu1b98+ffvb3x72MRKJhBobGwdcfvjw4QGXHThwQG9961vV3t6u6667TjNnztRPfvITvfvd79avf/1rXXLJJSMaf1dXl84//3zFYjF98pOfVE1Njfbs2aMHHnhAzc3NqqyslCR9+ctf1r/8y7/osssu00c+8hE1NDTou9/9rs4880ytX79e06ZNG9HzShYcJWnmzJk9l8XjcZ1//vk6/fTT9Y1vfGPIqeYf/vCH9eMf/1hr167VRz7yEcXjcT399NN6/vnneyrp2Yw722PQ3+WXX65///d/1+9+9zu9733v67m8vb1d999/v66++moFg0EdPHhQ73jHO1RdXa0bbrhB06ZN044dO3T33XeP+JhJtvzh0Ucf1e7du1VbW5v1/aqrq/XTn/60z2Xd3d36h3/4hz7/Nh577DGtXbtWJ598sj7/+c8rEAjo9ttv19ve9jY9/fTTOvXUU0c1bgCYElwAwIT3wgsvuJLc22+//Yge54tf/KIryX300Uf7XP75z3/eleQ+/vjjwz7GggUL3KOOOsoNhULu2Wef7Uaj0Yy3e+ONN1xJ7syZM91Dhw71XH7fffe5ktz777+/57ITTzzRnTVrltvU1NRz2V//+lc3EAi4f/u3f9tz2b59+9wZM2a45513nhuLxdzVq1e78+fPdyORSM9tHnrooQGP77que+GFF7pHH330gPGlH9PUcej/eq+66qqen7/4xS+6paWl7tatW/vc7oYbbnCDwaC7a9eujMcj5ayzznIlDfl166239tz+05/+tCvJffrpp3sua21tdRctWuQuXLjQTSQSruu67u233+5Kct94440+z/f444/3eW/Xr1/vSnJ/9atfDTrGHTt2uMFg0P3yl7/c5/KNGze6oVBowOX9pcbyyCOPuA0NDW59fb175513ujNnznSLi4vd3bt3u67ruldddZUryb3hhhsGPMZVV13lLliwoOfnxx57zJXkXnfddQNum0wmRzTubI5BJslk0p07d6576aWX9rn8l7/8pSvJfeqpp1zXdd177rnHleS+8MILI3r8wfz3f/+3K8ktLCx0zznnHPdf/uVf3KeffrrnvU8nyf385z8/6GP9f//f/+cGg0H3scce63lNS5Yscc8///ye4+i6rtve3u4uWrTIPe+883LyGgBgsmJKOQBAkvTUU0/p5ptv1mWXXdYztTflpptukuu6WVe3Dx06pHg8rtra2kEr2ymXX365pk+f3vPzGWecIcmmSUvSvn37tGHDBl199dWaMWNGz+2OP/54nXfeeXrwwQd7LqupqdG///u/649//KPOOOMMbdiwQf/zP/+jioqKntu87W1vU1VVle66666eyw4fPqw//vGPuvzyy7N6fUP51a9+pTPOOEPTp09XY2Njz9e5556rRCKhp556atjHWLhwof74xz8O+Prf//3fAbd98MEHdeqpp+r000/vuaysrEwf/ehHtWPHDm3atGlE409Vbx966KFBlxDcfffdSiaTuuyyy/q8xpqaGi1ZskSPP/54Vs917rnnqrq6WvPmzdMVV1yhsrIy3XPPPZo7d26f23384x8f9rF+85vfyHEcff7znx9wXWp6dLbjzuYYZOI4jt73vvfpwQcfVFtbW8/ld911l+bOndvzHqWq/w888IC6u7uzfvzBXHPNNfrDH/6gs88+W88884y++MUv6owzztCSJUv03HPPZf04d9xxh/7jP/5DX//613XOOedIkjZs2KBt27bpAx/4gJqamnqOWTQa1dvf/nY99dRTNK8DgCFMmsD91FNP6V3vepeOOuooOY6je++9d8SP4bquvvGNb2jp0qUKh8OaO3euvvzlL+d+sAAwzmzevFmXXHKJjj32WP3oRz864sd7+9vfro9//OP63//9X336058e8rbz58/v83MqfKemT+/cuVOStGzZsgH3XbFiRc8f/ylXXHGF3vnOd2rdunX6u7/7O7397W/vc59QKKRLL71U9913n2KxmCQLYt3d3TkJ3Nu2bdMf/vAHVVdX9/k699xzJQ1sYpVJaWmpzj333AFfp5122oDb7ty5c9Bjk7p+JBYtWqTPfOYz+tGPfqSqqiqdf/75+vd///c+a5e3bdsm13W1ZMmSAa+zrq4uq9coqefkyOOPP65NmzZp+/btOv/88/vcJhQKZTVN+vXXX9dRRx3V56RMf9mOO5tjMJjLL79cHR0d+u1vfyvJlmk8+OCDet/73tcT/M866yxdeumluvnmm1VVVaX3vOc9uv3223s+j6Nx/vnn66GHHlJzc7OeeuopXXvttdq5c6cuuuiirN6PDRs26GMf+5je//736zOf+UzP5du2bZMkXXXVVQOO2Y9+9CPFYrGsjgsATFWTZg13NBrVCSecoGuuuUbvfe97R/UYn/rUp/Twww/rG9/4ho477jgdOnRIhw4dyvFIAWB8qa+v1zve8Q5VVlbqwQcfVHl5eU4e93vf+54OHz6s2267TdOnT+9p1NRfMBjMeLnruqN63qampp4mWZs2bVIymRzQHO6KK67QD37wA/3+97/XxRdfrF/+8pdavny5TjjhhFE9Z7pkMqnzzjtP/+///b+M1y9duvSIn2M0+jfBSkk18Ur3zW9+U1dffbXuu+8+Pfzww7ruuut0yy236Pnnn1dtba2SyaQcx9Hvf//7jO9fWVlZVmM69dRTe9ZWDyYcDg94/0ZrJOMe7hgMZs2aNVq4cKF++ctf6gMf+IDuv/9+dXR09DmZ4ziOfv3rX+v555/X/fffr4ceekjXXHONvvnNb+r555/P+vhlUlJSojPOOENnnHGGqqqqdPPNN+v3v/+9rrrqqkHvc/jwYV166aVaunTpgBNuqer1rbfeqhNPPDHj/Y9kvAAw2U2awL127VqtXbt20OtjsZg+97nP6Re/+IWam5t17LHH6mtf+1rP9Mi6ujp9//vf1yuvvNJTKVi0aNFYDB0A8qapqUnveMc7FIvF9Oijj2rOnDk5e+xAIKA77rhDkUhEN998s2bMmKHrrrtuxI+zYMECSdKWLVsGXLd582ZVVVWptLS057Jrr71Wra2tuuWWW3TjjTfq29/+dp+KnWTd2OfMmaO77rpLp59+uh577DF97nOfG/HYMlm8eLHa2tp6Ktp+W7BgwaDHJnW91DtzoLm5uc/tBquAH3fccTruuOP0z//8z3ruued02mmn6T//8z/1pS99SYsXL5brulq0aFHeTiD0t3jxYj300EM6dOjQoFXukY57qGMwlMsuu0zf+c531NLSorvuuksLFy7UmjVrBtxuzZo1WrNmjb785S/r5z//ua688krdeeed+shHPpLdix5G6mTGvn37Br1NMpnUlVdeqebmZj3yyCMDmtItXrxYklRRUTFmn2kAmEwmzZTy4XziE5/Qn/70J9155516+eWX9b73vU8XXHBBz1Sp+++/X0cffbQeeOABLVq0SAsXLtRHPvIRKtwAJoV9+/Zp8+bNfdaLRqNRXXjhhdqzZ48efPBBLVmyZND7j3ZbsIKCAv3617/Waaedpk9/+tMDOiJnY86cOTrxxBP1k5/8pE9YfOWVV/Twww/3dB+XpF//+te666679NWvflU33HCDrrjiCv3zP/+ztm7d2ucxA4GA/uZv/kb333+/fvrTnyoej+dkOrlkYetPf/qTHnrooQHXNTc3Kx6P5+R5Ui688EKtW7dOf/rTn3oui0aj+q//+i8tXLhQK1eulNQbnNLXkCcSCf3Xf/1Xn8draWkZMMbjjjtOgUCgZ8rze9/7XgWDQd18880DZiK4rqumpqbcvcAsXXrppXJdVzfffPOA61JjzHbc2RyDoVx++eWKxWL6yU9+oj/84Q+67LLL+lx/+PDhAc+fqh6nP/7rr7/e07l9KI8++mjGy1P9DTItOUi5+eab9dBDD+kXv/hFxkLDySefrMWLF+sb3/hGn3XpKQ0NDcOODwCmsklT4R7Krl27dPvtt2vXrl066qijJEmf/exn9Yc//EG33367vvKVr2j79u3auXOnfvWrX+mOO+5QIpHQP/zDP+hv/uZv9Nhjj+X5FQBAZt/73vfU3NysvXv3SrKTh7t375YkffKTn+xp/nTjjTfqJz/5id54442evYuvvPJKrVu3Ttdcc43q6ur67GldVlamiy++uM/zjHRbsJSSkhL97ne/01lnnaVrrrlGlZWVeve73z2ix7j11lu1du1aveUtb9GHP/zhnm3BKisre6aqHzx4UB//+Md1zjnn6BOf+ETPuB9//HFdffXVeuaZZ/pMTb788sv13e9+V5///Od13HHH9ax5PlL/+I//qN/+9re66KKLdPXVV+vkk09WNBrVxo0b9etf/1o7duwYsO3akbjhhhv0i1/8QmvXrtV1112nGTNm9LzXv/nNb3pe86pVq7RmzRrdeOONPVXgO++8c0CwfOyxx/SJT3xC73vf+7R06VLF43H99Kc/VTAY1KWXXirJwvuXvvQl3XjjjdqxY4cuvvhilZeX64033tA999yjj370oz37mY+Vc845R//n//wf3Xbbbdq2bZsuuOACJZNJPf300z2fiWzHnc0xGMpJJ52kY445Rp/73OcUi8UGnMz5yU9+ov/4j//QJZdcosWLF6u1tVU//OEPVVFR0ecEUqr/QP+90/t7z3veo0WLFuld73qXFi9erGg0qkceeUT333+/TjnlFL3rXe/KeL+NGzfqi1/8os4880wdPHhwQFO+D37wgwoEAvrRj36ktWvXatWqVfrQhz6kuXPnas+ePXr88cdVUVGh+++/f9hjAgBTVj5ao/tNknvPPff0/PzAAw+4ktzS0tI+X6FQyL3ssstc13Xdv/u7v3MluVu2bOm531/+8hdXkrt58+axfgkAkJUFCxYMunVU+vZPqe2V0i8b6r7p2y257si3BXvnO9854PL9+/e7xxxzjFtUVOQ+/vjjPdtupW9xlaIMWxc98sgj7mmnneYWFxe7FRUV7rve9S5306ZNPde/973vdcvLy90dO3b0uV9qm7Gvfe1rfS5PJpPuvHnzXEnul770pQFjGO22YK5r23LdeOON7jHHHOMWFha6VVVV7lvf+lb3G9/4htvV1TXgudKdddZZ7qpVqzJeN9gxe/31192/+Zu/cadNm+YWFRW5p556qvvAAw8MuP/rr7/unnvuuW44HHZnz57t/tM//ZP7xz/+sc97u337dveaa65xFy9e7BYVFbkzZsxwzznnHPeRRx4Z8Hi/+c1v3NNPP73n/6vLly93r7322j7/L80ktS3YcNtiXXXVVW5paemg1/X/nMbjcffWW291ly9f7hYWFrrV1dXu2rVr3b/85S8jGvdIjsFgPve5z7mS3GOOOWbAdS+99JL7/ve/350/f74bDofdWbNmuRdddJH74osv9rndggULBrzGTH7xi1+4V1xxhbt48WK3uLjYLSoqcleuXOl+7nOfc1taWvrcNv3fVmpLuMG+0q1fv95973vf686cOdMNh8PuggUL3Msuu2zAFoIAgL4c1x1lV5pxzHEc3XPPPT3VmbvuuktXXnmlXn311QFNUsrKylRTU6PPf/7z+spXvtJnumVHR4dKSkr08MMP67zzzhvLlwAAAAAAmOCmxJTy1atXK5FI6ODBgz37u/Z32mmnKR6P6/XXX+9Z55Za85dqOAMAAAAAQLYmTYW7ra1Nr732miQL2N/61rd0zjnnaMaMGZo/f74++MEP6tlnn9U3v/lNrV69Wg0NDXr00Ud1/PHH653vfKeSyaROOeUUlZWV6dvf/raSyaSuvfZaVVRU6OGHH87zqwMAAAAATDSTJnA/8cQTOueccwZcftVVV+nHP/6xuru79aUvfUl33HGH9uzZo6qqKq1Zs0Y333yzjjvuOEnS3r179clPflIPP/ywSktLtXbtWn3zm98cdHsRAAAAAAAGM2kCNwAAAAAA48mU2YcbAAAAAICxROAGAAAAAMAHE7pLeTKZ1N69e1VeXi7HcfI9HAAAAADAJOe6rlpbW3XUUUcpEBi6hj2hA/fevXs1b968fA8DAAAAADDF1NfXq7a2dsjbTOjAXV5eLsleaEVFRZ5HAwAAAACY7FpaWjRv3ryePDqUCR24U9PIKyoqCNwAAAAAgDGTzbJmmqYBAAAAAOADAjcAAAAAAD4gcAMAAAAA4AMCNwAAAAAAPiBwAwAAAADgAwI3AAAAAAA+IHADAAAAAOADAjcAAAAAAD4gcAMAAAAA4AMCNwAAAAAAPiBwAwAAAADgAwI3AAAAAAA+IHADAAAAAOADAjcAAAAAAD4gcAMAAAAA4AMCNwAAAAAAPiBwAwAAAADgAwI3AAAAAAA+IHADAAAAAOADAjcAAAAAAD4I5XsAAAAAyCE3KUV2SbFWKVwuVc6XHGosAJAPBG4AAIDJoqFO2nKP1LhZindKoSKparm07BKpekW+RwcAUw6BGwAAYDJoqJPW3SZ1NEoV86SCUqk7Ku1fL0XqpVOvI3QDwBhjfhEAAMBE5yatst3RKFWtlMIVUiBo36tW2uVb7rXbAQDGDIEbAABgoovssmnkFfMkx+l7neNI5bVSY53dDgAwZgjcAAAAE12s1dZsF5Rmvr6w1K6PtY7tuABgiiNwAwAATHThcmuQ1h3NfH1X1K4Pl4/tuABgiiNwAwAATHSV860beUu95Lp9r3NdqXW3VLXCbgcAGDMEbgAAgInOCdjWX8VVUuMmqTMiJeP2vXGTXb7sYvbjBoAxxm9dAACAyaB6hW39VbNa6miSmrba95qT2BIMAPKEfbgBAAAmi+oVUtUy60Yea7U125XzqWwDQJ4QuAEAACYTJyBNW5jvUQAAxJRyAAAAAAB8QeAGAAAAAMAHBG4AAAAAAHxA4AYAAAAAwAcEbgAAAAAAfEDgBgAAAADABwRuAAAAAAB8QOAGAAAAAMAHBG4AAAAAAHxA4AYAAAAAwAcEbgAAAAAAfJDXwH3TTTfJcZw+X8uXL8/nkAAAAAAAyIlQvgewatUqPfLIIz0/h0J5HxIAAAAAAEcs7+k2FAqppqYmq9vGYjHFYrGen1taWvwaFgAAAAAARyTva7i3bdumo446SkcffbSuvPJK7dq1a9Db3nLLLaqsrOz5mjdv3hiOFAAAAACA7Dmu67r5evLf//73amtr07Jly7Rv3z7dfPPN2rNnj1555RWVl5cPuH2mCve8efMUiURUUVExlkMHAAAAAExBLS0tqqyszCqH5jVw99fc3KwFCxboW9/6lj784Q8Pe/uRvFAAAAAAAI7USHJo3qeUp5s2bZqWLl2q1157Ld9DAQAAAADgiIyrwN3W1qbXX39dc+bMyfdQAAAAAAA4InkN3J/97Gf15JNPaseOHXruued0ySWXKBgM6v3vf38+hwUAAAAAwBHL67Zgu3fv1vvf/341NTWpurpap59+up5//nlVV1fnc1gAAIx/blKK7JJirVK4XKqcLznjauIaAABTXl4D95133pnPpwcAYGJqqJO23CM1bpbinVKoSKpaLi27RKpeke/RAQAAT14DNwAAGKGGOmndbVJHo1QxTyoolbqj0v71UqReOvU6QjcAAOMEc88AAJgo3KRVtjsapaqVUrhCCgTte9VKu3zLvXY7AACQdwRuAAAmisgum0ZeMU9ynL7XOY5UXis11tntAABA3hG4AQCYKGKttma7oDTz9YWldn2sdWzHBQAAMiJwAwAwUYTLrUFadzTz9V1Ruz5cPrbjAgAAGRG4AQCYKCrnWzfylnrJdfte57pS626paoXdDgAA5B2BGwCAicIJ2NZfxVVS4yapMyIl4/a9cZNdvuxi9uMGAGCc4P/IAABMJNUrbOuvmtVSR5PUtNW+15zElmAAAIwz7MMNAMBEU71Cqlpm3chjrbZmu3I+lW0AAMYZAjcAABORE5CmLcz3KAAAwBA4FQ4AAAAAgA8I3AAAAAAA+IDADQAAAACADwjcAAAAAAD4gMANAAAAAIAPCNwAAAAAAPiAwA0AAAAAgA8I3AAAAAAA+IDADQAAAACADwjcAAAAAAD4gMANAAAAAIAPCNwAAAAAAPiAwA0AAAAAgA8I3AAAAAAA+IDADQAAAACADwjcAAAAAAD4gMANAAAAAIAPCNwAAAAAAPiAwA0AAAAAgA8I3AAAAAAA+IDADQAAAACADwjcAAAAAAD4gMANAAAAAIAPCNwAAAAAAPiAwA0AAAAAgA8I3AAAAAAA+IDADQAAAACADwjcAAAAAAD4gMANAAAAAIAPCNwAAAAAAPiAwA0AAAAAgA8I3AAAAAAA+CCU7wEAAABMKW5SiuySYq1SuFyqnC851EAAYDIicAMAAIyVhjppyz1S42Yp3imFiqSq5dKyS6TqFfkeHQAgxwjcAAAAY6GhTlp3m9TRKFXMkwpKpe6otH+9FKmXTr2O0A0AkwzzlwAAAPzmJq2y3dEoVa2UwhVSIGjfq1ba5VvutdsBACYNAjcAAIDfIrtsGnnFPMlx+l7nOFJ5rdRYZ7cDAEwaBG4AAAC/xVptzXZBaebrC0vt+ljr2I4LAOArAjcAAIDfwuXWIK07mvn6rqhdHy4f23EBAHxF4AYAAPBb5XzrRt5SL7lu3+tcV2rdLVWtsNsBACYNAjcAAIDfnIBt/VVcJTVukjojUjJu3xs32eXLLmY/bgCYZPitDgAAMBaqV9jWXzWrpY4mqWmrfa85iS3BAGCSYh9uAACAsVK9QqpaZt3IY622ZrtyPpVtAJikCNwAAABjyQlI0xbmexQAgDHA6VQAAAAAAHxA4AYAAAAAwAcEbgAAAAAAfEDgBgAAAADABwRuAAAAAAB8QOAGAAAAAMAHBG4AAAAAAHxA4AYAAAAAwAcEbgAAAAAAfEDgBgAAAADABwRuAAAAAAB8QOAGAAAAAMAHBG4AAAAAAHxA4AYAAAAAwAcEbgAAAAAAfEDgBgAAAADABwRuAAAAAAB8QOAGAAAAAMAHBG4AAAAAAHxA4AYAAAAAwAcEbgAAAAAAfEDgBgAAAADABwRuAAAAAAB8QOAGAAAAAMAHBG4AAAAAAHxA4AYAAAAAwAcEbgAAAAAAfEDgBgAAAADABwRuAAAAAAB8QOAGAAAAAMAHBG4AAAAAAHxA4AYAAAAAwAcEbgAAAAAAfEDgBgAAAADABwRuAAAAAAB8QOAGAAAAAMAHBG4AAAAAAHxA4AYAAAAAwAcEbgAAAAAAfEDgBgAAAADABwRuAAAAAAB8QOAGAAAAAMAHBG4AAAAAAHwwbgL3V7/6VTmOo09/+tP5HgoAAAAAAEdsXATuF154QT/4wQ90/PHH53soAAAAAADkRN4Dd1tbm6688kr98Ic/1PTp0/M9HAAAAAAAciLvgfvaa6/VO9/5Tp177rnD3jYWi6mlpaXPFwAAAAAA41Eon09+55136qWXXtILL7yQ1e1vueUW3XzzzT6PCgAAAACAI5e3Cnd9fb0+9alP6Wc/+5mKioqyus+NN96oSCTS81VfX+/zKAEAAAAAGB3HdV03H09877336pJLLlEwGOy5LJFIyHEcBQIBxWKxPtdl0tLSosrKSkUiEVVUVPg9ZAAAAADAFDeSHJq3KeVvf/vbtXHjxj6XfehDH9Ly5ct1/fXXDxu2AQAAAAAYz/IWuMvLy3Xsscf2uay0tFQzZ84ccDkAAAAAABNN3ruUAwAAAAAwGeW1S3l/TzzxRL6HAAAAAABATlDhBgAAAADABwRuAAAAAAB8QOAGAAAAAMAHBG4AAAAAAHxA4AYAAAAAwAcEbgAAAAAAfEDgBgAAAADABwRuAAAAAAB8QOAGAAAAAMAHBG4AAAAAAHxA4AYAAAAAwAcEbgAAAAAAfEDgBgAAAADABwRuAAAAAAB8QOAGAAAAAMAHBG4AAAAAAHxA4AYAAAAAwAcEbgAAAAAAfEDgBgAAAADABwRuAAAAAAB8QOAGAAAAAMAHBG4AAAAAAHxA4AYAAAAAwAcEbgAAAAAAfEDgBgAAAADABwRuAAAAAAB8QOAGAAAAAMAHBG4AAAAAAHxA4AYAAAAAwAcEbgAAAAAAfEDgBgAAAADABwRuAAAAAAB8QOAGAAAAAMAHBG4AAAAAAHxA4AYAAAAAwAcEbgAAAAAAfEDgBgAAAADABwRuAAAAAAB8QOAGAAAAAMAHBG4AAAAAAHxA4AYAAAAAwAcEbgAAAAAAfEDgBgAAAADABwRuAAAAAAB8QOAGAAAAAMAHBG4AAAAAAHxA4AYAAAAAwAcEbgAAAAAAfEDgBgAAAADABwRuAAAAAAB8QOAGAAAAAMAHBG4AAAAAAHxA4AYAAAAAwAcEbgAAAAAAfEDgBgAAAADABwRuAAAAAAB8QOAGAAAAAMAHBG4AAAAAAHxA4AYAAAAAwAcEbgAAAAAAfEDgBgAAAADABwRuAAAAAAB8QOAGAAAAAMAHBG4AAAAAAHxA4AYAAAAAwAcEbgAAAAAAfEDgBgAAAADABwRuAAAAAAB8QOAGAAAAAMAHBG4AAAAAAHwQyvcAAAAApiw3KUV2SbFWKVwuVc6XHOohADBZELgBAADyoaFO2nKP1LhZindKoSKparm07BKpekW+RwcAyAECNwAAwFhrqJPW3SZ1NEoV86SCUqk7Ku1fL0XqpVOvI3QDwCTAnCUAAICx5Catst3RKFWtlMIVUiBo36tW2uVb7rXbAQAmNAI3AADAWIrssmnkFfMkx+l7neNI5bVSY53dDgAwoRG4AQAAxlKs1dZsF5Rmvr6w1K6PtY7tuAAAOUfgBgAAGEvhcmuQ1h3NfH1X1K4Pl4/tuAAAOUfgBgAAGEuV860beUu95Lp9r3NdqXW3VLXCbgcAmNAI3AAAAGPJCdjWX8VVUuMmqTMiJeP2vXGTXb7sYvbjBoBJgN/kAAAAY616hW39VbNa6miSmrba95qT2BIMACYR9uEGAADIh+oVUtUy60Yea7U125XzqWwDwCRC4AYAAMgXJyBNW5jvUQAAfMIpVAAAAAAAfEDgBgAAAADABwRuAAAAAAB8QOAGAAAAAMAHBG4AAAAAAHxA4AYAAAAAwAcEbgAAAAAAfEDgBgAAAADABwRuAAAAAAB8QOAGAAAAAMAHBG4AAAAAAHxA4AYAAAAAwAcEbgAAAAAAfEDgBgAAAADABwRuAAAAAAB8EMr3AAAAAMYdNylFdkmxVilcLlXOlxzqFACAkclr4P7+97+v73//+9qxY4ckadWqVfrXf/1XrV27Np/DAgAAU1lDnbTlHqlxsxTvlEJFUtVyadklUvWKfI8OADCB5DVw19bW6qtf/aqWLFki13X1k5/8RO95z3u0fv16rVq1Kp9DAwAAU1FDnbTuNqmjUaqYJxWUSt1Raf96KVIvnXodoRsAkDXHdV0334NIN2PGDN1666368Ic/POxtW1paVFlZqUgkooqKijEYHQAAmLTcpPTsVy1cV62UHCftOldq3CTVnCSddj3TywFgChtJDh03a7gTiYR+9atfKRqN6i1veUvG28RiMcVisZ6fW1paxmp4AABgsovssmnkFfP6hm3Jfi6vlRrr7HbTFuZliACAiSXvp2c3btyosrIyhcNhfexjH9M999yjlStXZrztLbfcosrKyp6vefPmjfFoAQDApBVrtTXbBaWZry8stetjrWM7LgDAhJX3wL1s2TJt2LBBf/7zn/Xxj39cV111lTZt2pTxtjfeeKMikUjPV319/RiPFgAATFrhcmuQ1h3NfH1X1K4Pl4/tuAAAE1bep5QXFhbqmGOOkSSdfPLJeuGFF/Sd73xHP/jBDwbcNhwOKxwOj/UQAQDAVFA537qRD7aGu3W3reGunJ+/MQIAJpS8V7j7SyaTfdZpAwAAjAknYFt/FVdZg7TOiJSM2/fGTXb5sotpmAYAyFpeK9w33nij1q5dq/nz56u1tVU///nP9cQTT+ihhx7K57AAAMBUVb3Ctv5K7cPdusemkdecZGGbLcEAACOQ18B98OBB/e3f/q327dunyspKHX/88XrooYd03nnn5XNYAABgKqteIVUts27ksVZbs105n8o2AGDE8hq4//u//zufTw8AAJCZE2DrLwDAEeNULQAAAAAAPsh7l3IAAABMEG6SqfYAMAIEbgAAAAyvoa63mVy805rJVS23zu40kwOAjAjcAAAAGFpDnbTuNqmjUaqYJxWUSt1R27M8Um+d3QndADAAc4AAAAAwODdple2ORqlqpRSukAJB+1610i7fcq/dDgDQB4EbAAAAg4vssmnkFfMkx+l7neNI5bVSY53dDgDQB4EbAAAAg4u12prtgtLM1xeW2vWx1rEdFwBMACNaw93c3Kx77rlHTz/9tHbu3Kn29nZVV1dr9erVOv/88/XWt77Vr3ECAAAgH8Ll1iCtO2rTyPvritr14fKxHxsAjHNZVbj37t2rj3zkI5ozZ46+9KUvqaOjQyeeeKLe/va3q7a2Vo8//rjOO+88rVy5UnfddZffYwYAAMBYqZxv3chb6iXX7Xud60qtu6WqFXY7AEAfWVW4V69erauuukp/+ctftHLlyoy36ejo0L333qtvf/vbqq+v12c/+9mcDhQAAMB37DM9kBOwrb8i9VLjJluzXVhqle3W3VJxlbTsYo4TAGTguG7/U5UDNTU1aebMmVk/6EhvP1otLS2qrKxUJBJRRUWGKU4AAADZYp/poWU8PissbHN8AEwhI8mhWVW4RxqexyJsAwAA5Az7TA+veoVUtYwZAAAwAiNqmpZJXV2dnn/+ea1evVonnnhiDoYEAAAwhvrvM53a+iq1z3TjJttnumoZ4dIJSNMW5nsUADBhjOj/Gl/4whd066239vz8+OOP68QTT9Q//uM/6pRTTtHPfvaznA8QAADAV+wzDQDwyYgC969//es+TdO+/OUv67rrrlNjY6O+973v6Stf+UrOBwgAAOAr9pkGAPgkqynld9xxh1zX1Y4dO7RhwwY1NTXJdV09++yzOuOMM3THHXcomUxq+/btuuOOOyRJf/u3f+vrwAEAAHKCfaYBAD7JKnAvWLBAklRYWKjZs2drwYIF2rBhgyoqKnTOOefIdV3FYjE5jqOFCxcqi8bnAAAA40Nqn+n96/uu4ZZ695muOYl9pgEAI5ZV4D7rrLMkSSeddJIeeOABXX/99frDH/6gCy+8UGeeeaYkaePGjZo3b17PzwAAABMC+0wDAHwyov9z3HrrrdqwYYNOO+007dy5U1/4whd6rvvxj3+sCy64IOcDBAAA8F31Ctv6q2a11NEkNW217zUnsSUYAGDUHHcU87+bmpoG7LW9b98+VVRUqLR0kIYjPhjJhuMAAADDcpPsMw0AGNJIcuio9uHuH7Ylac6cOaN5KAAAgPGDfaYBADmU1SnbO++8M+sHrK+v17PPPjvqAQEAAAAAMBlkFbi///3va8WKFfr617+uurq6AddHIhE9+OCD+sAHPqCTTjpJTU1NOR8oAAAAAAATSVZTyp988kn99re/1Xe/+13deOONKi0t1ezZs1VUVKTDhw9r//79qqqq0tVXX61XXnlFs2fP9nvcAAAAAACMayNumtbY2KhnnnlGO3fuVEdHh6qqqrR69WqtXr1agcDYNhWhaRoAAAAAYCz52jStqqpKF1988WjHBgAAAADAlMA+FwAAAAAA+IDADQAAAACADwjcAAAAAAD4gMANAAAAAIAPRh24u7q6tGXLFsXj8VyOBwAAAACASWHEgbu9vV0f/vCHVVJSolWrVmnXrl2SpE9+8pP66le/mvMBAgAAAAAwEY04cN94443661//qieeeEJFRUU9l5977rm66667cjo4AAAAAAAmqhHvw33vvffqrrvu0po1a+Q4Ts/lq1at0uuvv57TwQEAAAAAMFGNuMLd0NCgWbNmDbg8Go32CeAAAAAAAExlIw7cb3rTm/S73/2u5+dUyP7Rj36kt7zlLbkbGQAAAAAAE9iIp5R/5Stf0dq1a7Vp0ybF43F95zvf0aZNm/Tcc8/pySef9GOMAAAAAABMOCOucJ9++unasGGD4vG4jjvuOD388MOaNWuW/vSnP+nkk0/2Y4wAAAAAAEw4juu6br4HMVotLS2qrKxUJBJRRUVFvocDAAAAAJjkRpJDR1zhfvDBB/XQQw8NuPyhhx7S73//+5E+HAAAAAAAk9KIA/cNN9ygRCIx4HLXdXXDDTfkZFAAAAAAAEx0Iw7c27Zt08qVKwdcvnz5cr322ms5GRQAAAAAABPdiAN3ZWWltm/fPuDy1157TaWlpTkZFAAAmATcpNS8Qzqw0b67yXyPCACAMTXibcHe85736NOf/rTuueceLV68WJKF7f/7f/+v3v3ud+d8gACAPHCTUmSXFGuVCr2TqV1RKVwuVc6XnBGfr8VU01AnbblHatwsxTulUJFUtVxadolUvSLfowMmv/Tf4/zuBvJmxF3KI5GILrjgAr344ouqra2VJO3evVtnnHGG7r77bk2bNs2PcWZEl3IA8EF6UIoelKIH7PLS2VLpLEIThtdQJ627TepolCrmSQWlUndUaqmXiqukU6/j8wP4iRNegK9GkkNHXOGurKzUc889pz/+8Y/661//quLiYh1//PE688wzRz1gAMA4kR6UCkqk9garbMuV5Fjo3r9eitQTmpCZm7Q/9DsapaqVkuPY5eEK+7lxk7TlXqlqGdU2wA+DnfDidzeQFyMO3JLkOI7e8Y536B3veEeuxwMAyJf0oDRzhbT7WSneIZXNkRxZ+G7dLdWeJjXVEZqQWWSXVdUq5vWG7RTHkcprpcY6u920hXkZIjBpccILGHeyCty33XabPvrRj6qoqEi33XbbkLe97rrrcjIwAMAYSw9KXS1Se6NUWNn7B1thhV3W1UJowuBirTaFtWCQRqqFpVLrHrsdgNzihBcw7mQVuP/t3/5NV155pYqKivRv//Zvg97OcRwCNwBMVOlBqaNRSsalYEHv9cFCqatVisekkpmEJmQWLrf1ot1Rq6r11xW168PlYz82YLLjhBcw7mQVuN94442M/w0AmETSg1IwLAVCUqJbCoXt+kSXXRYKE5owuMr51pxp//q+U1olyXVtWULNSXY7ALnFCS9g3BnR4o3u7m4tXrxYdXV1fo0HAJAvqaDUUm/Tx0uqpK6IhSS5NpW8pMqua90tVa0gNGEgJ2CdkIurbL1oZ8RmS3RG7OfiKmnZxawfBfyQ/nu8/0ZEqRNe/O4GxtSI/m9XUFCgzs5Ov8YCAMin9KDUVGdr/UJFUtteqXWvFCySyufadYQmDKV6hXVCrlktdTRJTVvte81JdEgG/MQJL2DcGfE+3F/5yle0detW/ehHP1IoNKom5znDPtwA4INh9+FeYX+wEZowHDdpzZlirTaFtXI+f+gDYyHjPtz87gZyZSQ5dMSB+5JLLtGjjz6qsrIyHXfccSot7duU4e677x75iEeJwA0AgzjSoJN+/0Lv93xXlNAEABMFJ7wA34wkh464RD1t2jRdeumlox4cAMBnGSsby22aYbaVDSfAljEAMJHxexwYF0YcuG+//XY/xgEAyIWGOmndbbatV8U82xqmO2odoyP1rJ8FAAAYQ1nPK0kmk/ra176m0047TaeccopuuOEGdXR0+Dk2AMBIuEmrbHc02nZM4QopELTvVSvt8i332u0AAADgu6wD95e//GX90z/9k8rKyjR37lx95zvf0bXXXuvn2AAAIxHZZdPIK+b13ftYsp/La6XGOrsdAAAAfJd14L7jjjv0H//xH3rooYd077336v7779fPfvYzJZNUSgBgXIi12prtgtLM1xeW2vWx1rEdFwAAwBSVdeDetWuXLrzwwp6fzz33XDmOo7179/oyMADACIXLrUFadzTz9V1Ruz5cPrbjAgAAmKKyDtzxeFxFRUV9LisoKFB3d3fOBwUAGIXK+daNvKVe6r/jo+tKrbttH9bK+fkZHwAAwBSTdZdy13V19dVXKxwO91zW2dmpj33sY3324h7LfbgBAGmcgG39FamXGjfZmu3CUqtst+6WiqukZRezDysAAMAYyTpwX3XVVQMu++AHP5jTwQAAjlD1Ctv6K7UPd+sem0Zec5KFbbYEAwAAGDOO6/afdzhxtLS0qLKyUpFIRBUVFfkeDgCMH27SupHHWm3NduV8KtsAAAA5MJIcmnWFGwAwgTgBadrCfI8CAABgSqPcAQAAAACADwjcAAAAAAD4gMANAAAAAIAPCNwAAAAAAPiAwA0AAAAAgA8I3AAAAAAA+IDADQAAAACADwjcAAAAAAD4gMANAAAAAIAPCNwAAAAAAPgglO8BAAAwJtykFNklxVqlcLlUOV9yOO+cd7wvAIBJjMANAJj8GuqkLfdIjZuleKcUKpKqlkvLLpGqV+R7dFMX7wsAYJIjcAMAJreGOmndbVJHo1QxTyoolbqj0v71UqReOvU6wl0+8L4AAKYA5mwBACYvN2kV1I5GqWqlFK6QAkH7XrXSLt9yr90OY4f3BQAwRRC4AQCTV2SXTVeumCc5Tt/rHEcqr5Ua6+x2GDu8LwCAKYLADQCYvGKttja4oDTz9YWldn2sdWzHNdXxvgAApggCNwBg8gqXWyOu7mjm67uidn24fGzHNdXxvgAApggCNwBg8qqcb12vW+ol1+17netKrbulqhV2O4wd3hcAwBRB4AYATF5OwLaYKq6SGjdJnREpGbfvjZvs8mUXs+/zWON9AQBMEY7r9j+1PHG0tLSosrJSkUhEFRUV+R4OAGC8yrjf8woLdWw9lT+8LwCACWgkOZR9uAEAk1/1CqlqmXW9jrXa2uDK+VRQ8433BQAwyRG4AQBTgxOQpi3M9yjQH+8LAGAS4xQyAAAAAAA+oMINAJja3CRTmgEAgC8I3ACAqStj067l1kGbpl0AAOAIEbgBAFNTQ5207japo1GqmCcVlErdUWn/eilSL516HaEbAAAcEebMAQCmHjdple2ORqlqpRSukAJB+1610i7fcq/dDgAAYJQI3ACAqSeyy6aRV8yTHKfvdY4jlddKjXV2OwAAgFEicAMApp5Yq63ZLijNfH1hqV0fax3bcQEAgEmFwA0AmHrC5dYgrTua+fquqF0fLh/bcQEAgEmFwA0AmHoq51s38pZ6yXX7Xue6UutuqWqF3Q4AAGCU6FIOAJh6nIBt/RWplxo32ZrtwlKrbLfuloqrpGUXsx83AABjxU1a75RYq80wq5w/Kf4/nNfAfcstt+juu+/W5s2bVVxcrLe+9a362te+pmXLluVzWACAqaB6hW39ldqHu3WPTSOvOcnCNluCAQAwNhrqev9/HO+0/x9XLbeT4xP8/8d5DdxPPvmkrr32Wp1yyimKx+P6p3/6J73jHe/Qpk2bVFo6SCMbAABypXqFVLVsUp5RBwBgQmiok9bdZltyVsyzhqbdUWn/epuJdup1Ezp0O67bf/Fa/jQ0NGjWrFl68skndeaZZw57+5aWFlVWVioSiaiiomIMRggAAAAAyAk3KT37VQvXVSv7btXpurbsq+Yk6bTrx9XJ8JHk0HG1hjsSiUiSZsyYkfH6WCymWCzW83NLS8uYjAsAAAAAkGORXTaNvGJe37At2c/ltVJjnd1u2sK8DPFIjZvTBMlkUp/+9Kd12mmn6dhjj814m1tuuUWVlZU9X/PmzRvjUQIAAAAAciLWamu2CwZZTlxYatfHWsd2XDk0bgL3tddeq1deeUV33nnnoLe58cYbFYlEer7q6+vHcIQAkEPJuLTrGanuN/Y9Gc/3iAB/uUmpeYd0YKN9d5P5HhEAIN/C5dYgrTua+fquqF0fLh/bceXQuJhS/olPfEIPPPCAnnrqKdXW1g56u3A4rHA4PIYjAwAfbH3AmoMcfk1KdEvBAmn6MdYUZOlF+R4dkHuTuPssAOAIVM63/x8Mtoa7dbet4a6cn78xHqG8Bm7XdfXJT35S99xzj5544gktWrQon8MBkC+TdN/FjLY+ID16vRSLSKWzpFCJFG+3piCPXm+3IXRjMpnk3WcBAEfACdjJ10i9/S1UXmvTyLuiFraLq2yrzgn8d2FeA/e1116rn//857rvvvtUXl6u/fv3S5IqKytVXFycz6EBGCtTqfKVjFvwiEWkaUf3/s+jsEIqKJOat0vrvisdc4EUGBcTkIAj4ybt33dHY9/KRbjCfm7cJG2517Zmm8B/TAEAjkD1Cjv5mvp7sHWP/T1Yc5KF7Qn+92Be/6L7/ve/L0k6++yz+1x+++236+qrrx77AQEYW1Ot8rX7eZtGXjprYLhwAlJJtXR4m91u/un5GSOQS1Og+ywAIAeqV9jJ10k44zHvU8oBTFFTsfIVPWBrtkMlma8vKJXaG+12wHAmwlKMbLrPtu6Z0N1nAQA54gQm5clX5iwCyI+pWPkqnW0N0uLtNo28v+6oJEeKtVkX5/EYoDA+TJSlGOndZ8MZPvOToPssAABD4S85APkxBfZdHKB2jXUjjx4cuCVSrE06/LqU7Ja23i898a/Ss1+1YAWkSy3F2L9eKqmSZi6z7/vX2+Xj6TOT6j7bUm/dZtOlus9WrZjQ3WcBABgKgRtAfkyBfRcHCIRsXXq40hqkxSLWSC16QDrkhaS5p1qFcrwGKORX/6UY4QopEOxditHRaEsxxsse16nus8VVtkyk0/vMd0bs50nQfRYAgKHwfzgA+TFVK19LL5Le/jULR7GIFNkhtR2QCsqlY94p1awe3wEK+TWSpRjjRar7bM1qqaNJatpq32tOmnyNEQEA6Ic13ADyYwrsuziopRfZ1l+7n5cObrRAPXOFVDyt7+0m61p2jN5EbUI2ibvPAgAwFAI3gPyZ5PsuDikQsq2/wpXSjscHnzo/XgMU8mMiNyEbTffZ4TqxT4RO7QCAKY3ADSC/pnrlayIHKIy91FKM/ev7bqcn9S7FqDlpcizFGK4T+0Tp1A4AmNII3ADyb5Luu5iVqRSgcOSmylKMVCf2jkZbr15Qaiel9q+3177kndK23w1+PWvDAQDjxAT/PzIAX7lJ2w/6wEb7TuOu3KOLM0ZqsjchG64Te3uDtO679n0idGoHAExpVLgBZMZ0zbEzldeyY3Qm81KM4Tqxhyul/S9JC88ZvlP7VJ05AwAYNwjcAAYabjrnZKiijTeTOUDBH5N1KcZwndidoJTolpxB/oTp32iQxmoAgDwicAPoq/90zlQFKTVds3GTTdesWsYfrbk2WQMUMBLDNRJ0E1KwQHLjme+f3miQmToAgDzjr2UAfQ03nTN9uiYA5FqqkWBLvTUOTOe6UiwiTV9ifQ4yXd+6W6paYYF93W02M6ekSpq5zL7vX2+XN9SN3WsCAExZBG4AfQ03nbOw1K5nX2gAfhiukWBJtXTqJ+37YI0Gl75b2nLf4I3XaKwGABgjTCkH0Bf7QgPIt2waCU5fPPj1BcXZz9RhGQcAwEcEbgB9sS80ML7lsgnYeG4oNlwjwaGuP7Bx+Jk66Y3VAADwCYEbQF+p6ZyRepueWV5rf5x2RS1ssy80kD+5bAI2ERqKDddIcLDrmakDABgn+IsZwECp6Zw1q6WOJqlpq32vOYktwYB8SW3Xl4smYLl8rPFouMZrqcZqzNQBAPiMCjeAzNgXGhg/crld31TY+o+ZOgCAcYLADWBw7AsNjA8j2a5vuH+zuXys8SybxmsAAPiMwA0AwHiXzXZ92TYBy+VjjXfM1AEA5BmBGwCQe8m4tPt5KXpAKp0t1a6RAvwvZ9Ry2QRsqjUUY6YOACCP+OsHAJBbWx+wxluHX5MS3VKwQJp+jE3vXXpRvkc3MeVyuz62/gMAYMwQuAEAubP1AenR66VYRCqdJYVKpHi7Na569Hq7DaF75HLZBIyGYgAAjBnHdfvvlzFxtLS0qLKyUpFIRBUVGabFAQDGTjIu/fxCC3HTju4b2Nyk1LxdqlolfeB3TC8frYx7Z68YXROwXD4WAABTyEhyKH/xAAByY/fzNo28dNbA6qgTkEqqpcPb7HbzT8/PGCe6XDYBo6EYAAC+I3ADAHIjesDWbIdKMl9fUCq1N9rtMHq5bAJGQzEAAHzFaWwAQG6UzrYGafH2zNd3R+360tljOy4AAIA8IXADAHKjdo11I48etDXb6dyk1N4gTV9itwMAAJgCCNwAJhc3KTXvkA5stO/9gx/8EwjZ1l/hSmuQFotYI7VYxH4OV0qnfpKGaQAAYMrgrx4Ak0fGrsvLbQskui6PjdSWX6l9uNsbbRp51SoL22wJBgAAphACN4DJoaHOQl5Ho1Qxzxp0dUel/ettv+FTryN0j5WlF0nHXGDdyKMHbM127Roq2wAAYMrhrx8AE5+btMp2R6NUtVJyHLs8XGE/N26SttxrWyCx5dHYCITY+gsAAEx5/OUJYOKL7LJp5BXzesN2iuNI5bVSY53dDgAAABgjBG4AE1+s1dZsF5Rmvr6w1K6PtY7tuAAAADClEbgBTHzhcmuQ1h3NfH1X1K4Pl4/tuAAAADClEbgBTHyV860beUu95Lp9r3NdqXW3VLXCbgcAAACMEZqmAfCXm7S107FWqzBXzs994zInYFt/ReqtQVp5rU0j74pa2C6ukpZdTMO0yWQsPlcAAABHiMANwD9juS929Qrb+iv1fK177PlqTrKwzZZgkwf7rQMAgAmCwA3AH/nYF7t6hW39ReVz8mK/dQAAMIHwVyiA3Ou/L3a4QgoEe/fF7mi0fbHdZO6f2wlI0xZKs4+z74TtySOfnysAAIBR4C9RALnHvtjwA58rAAAwwRC4AeQe+2LDD3yuAADABMMabmA8m6idmNP3xQ5XDLyefbEnrnx+JvlcAQCACYbADYxXE7kTc2pf7P3rbW1t+vTf1L7YNSexL/ZEk+/PJJ8rAAAwwRC4gfFoondiZl/syWc8fCb5XAEAgAmGv0qA8WaydGJO7Ytds1rqaJKattr3mpPG/wkD9DWePpN8rgAAwARChRsYb0bSiXnawrwMMWvsiz05jLfPJJ8rAAAwQRC4gfEmm07MrXsmTifm1L7YGB9G0/RsPH4m+VwBAIAJgMANjDd0YoZfRtv0jM8kAADAqDD/DhhvUp2YW+qt83K6VCfmqhV0YsbIpJqe7V8vlVRJM5fZ9/3r7fKGusHvy2cSAABgVAjcwHiT6sRcXGWdmDsjUjJu3xs30YkZI3ekTc/4TAIAAIwKfx0B4xGdmJFLI2l6Nhg+kwAAACPGGm5gvKITM3IlV03P+EwCAACMCIEbGM/oxIxcyEXTs/7dzWet6hu0R9P9PF8m0lgBAMCERuAGgMku1fRs/3pbs50+rTzV9KzmpMGbng3X3Xy03c/9MFyYHk9jBQAAkx6BGwAmu1TTs0i9NTkrr7Vp5F1RC9tDNT1LdTfvaLQ14AWlVinfv94eb8k7pW2/G/z6sVzfnc2JgaFeC2vRAQBAjjGHDgCmgtE0PRuuu3l7g7Tuu/Z9NN3Pc2nYbc9ePbJO7QAAAKNAhRsApoqRNj0brrt5uELa/5K08Jzhu5/72Yug/4mB1FhSYbpxk/TXn0it+7Lr1E7fBAAAkCMEbgCYSkbSiG+47uaBkJTolhTMfH223c+PVLbbniWTg7/2sRorAACYUphSDmDicJNS8w7pwEb7zvRff6V3N88kGZeCBZISma/Ppvt5LmSz7ZmblAKBwV/LWI0VAABMKVS4AUwMdJcee8N1N4+1SNOXSJ0RqyKPtPt5rmSz7VnxDKm0RorsGF2ndgAAgFGgwg1g/Bu2IVZdvkc4OaW6mxdX2TrozohVtTsj9nNJtXTqJ+17puuH6n6eS6kTAy31Fp7TpcJ01UrphKsHfy1jNVYAADClUOEGML5l0xBry73WDIywlHup7uap2QWte6yaXHOSBdTqFdL0xUNf77dstz3L5rUAAADkkOO6/csBE0dLS4sqKysViURUUZFhGiEw1bjJoTtQD3f9eNS8Q3riX62inWm6cGfEtrc6+wsj6y7t57GYiMd5OOPlszXU82RcdrBiYJhOf4xCb913V3TyvFcAAMBXI8mhVLiByWK4Nc4919dJHYcsVMxcLp14tVS9Kt+jH1w2DbFG2l36SNeDjzj0TYK15sN1Nx9J9/PRGu7YZrvtWWqsDXXSq3dOvvcKAACMGwRuYDJIrXHuaLStkQpKrYHU/vU2zXbJO6Vtv5MOb5e626zZVTwmHXhZ2vWkdMa/SksvyveryCybhlgj6S493LE69bqhw9ZQoU86ssfG4LJ937IN/kf6OQAAAMgCgRuY6IZb49zwqrTuu5Jcqb1JSnRI4UqpaLqU6LI1rk9/UZq2SJo1Divdw3XKHkl36SNdDz5kSNtl4Zu15rmX63X89AUAAABjhL8kgIkussuqrRXz+oZRyX4OV0iHttk650SHdZQOhi1IhIqk8rlS237prz8Zn/taD9cpeyTdpYc7VuW1NuU+smvgffuHtHCFFAj2hrTILmnnkwO3x8rmsTG0I3nfxuLxAAAABkHgBia64dY4B0JSvMOmkYcrJfULGMGwfTWN44CR6i5ds9pOHDRtte81J41s6m8268HjnZnXgw8X0opn2tr4ZHzkj42hHcn7NhaPBwAAMAimlAMT3XBrnJNxq8Qm45KCVhlOdEnBQqmwXEp2SaGwlEyOn4CRqSlZ1TIpdIWFbUmaudTW6o5kyu+RrAcfLqQVVXq3i0glM0f22IOZSN3O/Rxrrtfx5/rxAAAABkHgBia64dY4x1qkaUfbFNmGjVIiZpc7jhQqlgrL7DGKZ+QmYBxp8MrUlKx4hl3XcejIukkfyXrw4UJaIGTjbG+09fBHstZ8sOMwXjto+z3WXK7j9+PxAAAABkHgBia61BrnSL2taS6vtSmxXVELDiXVthfxvhekeJc3hTxkFe8ur2pbUiVVrxwYMEYano80eGVqStayS9p6vyRXmneGNHPZ6LtJD3eshloPPmxI2yMtOFvq7hj5Y2dzHMZrB+2xGOuRvG9j8XgAAACDIHADk0FqjXMq7LbusbBbc5K05CLpj/9XKiiRFJSS3VLStTARLJbcbqvKLrmob8AYaXg+0uCVqXO060otu+0kgbzK47SFR9ZNeqhjteziwceYTUg76aN225E+9nDHQRqfHbTHcqyjfd/G6vEAAAAyIHADk0X1Cgs2/SvS9c9Jh1+TKhdITtA6kne3S3KlQEFvEIpFeh9rpOE5F8ErU1OyWMROBoQrbbztjXZZ0bSB3aSz2Xt5uGM1XCjMNqSN5rGHOg4pR/Ka/TDWYx3t+zZWjwcAANAPgRuYTJzAwGATPSAluqVQia0znn60FI95zdRC1lAtsstuJ40uPOcieGVqSpbwxhkssJ+7Wm3sKYWlFnpH0+wt07HKRjYhbbSPLVlTu/YmW1/vJu1kQ/oxHc1rHmppQDIu7X7e3v/S2VLtGvtcZCObbt+jfX8GcyTHdiweDwAAIA2BG5jsSmdbYI23S4UVkhyryqbEInZ96Wz7eTThORfBK1NTsmDYwl+iW1aRD1lH9ZRcd5POds26XyGtoU7a+L+2RduhbVJBsa2vr1pua/Glkb/moZYGHNom/elWqfkNKZmwkD/jGKviL71o+Mem2zcAAMCQCNzAZFe7Rpp+jFWmC8r6Bkg3KbU3SFWr7HbS6MJzLoJXpqZk4UoLnK37JLlS+VHe9HLlvpt0vruCp6bxtzdIZXOsI3uoWGrbZydF5r7Z1omP5DUPtTRg2x+kxldtj/Zg2JYXxDukg3+VHr3e7j9c6KbbNwAAwJBYqAZMdoGQVSzDlVLzdgtvybh9b95ul5/6yd5pxOnhOZNM4TkVvFrqLWilSwWvqhVDB69UU7LiKjs50BmR3IRV1BMx+yqfa5d1Ruw2ueomnQqm+16yan/RdPu+7yW7vKHuyB5/OOnT+KtXSbNPtHDc1SIVlNsx379Bang1+9fcf2lAuMKWD4QrpKKZ1rU+FpHC0+2yYKF9LtyA3Wfdd72924eQ6T1LxnP//gAAAExQVLiBqSBVqVx3mzVQa2+0QFm1ysJ2eiVzsKql60qdzTadvOZEqaK29z652mZpsKZkS98tybWqb9PW3HaTTgXT5u02df3Qtt717cUzbd24313B+0/jL622inbTZnuvkgmrdNeeJp34oexe82BLA1xX2rfOXqMT8q5zetfzd7fb5Ye22dru+acP/Tx0+wYAABgUgRuYKpZeJB1zwfANsjKF5+4OqWGjbdEVCNlU5+e+3ne6da6CV6amZBW19nPTVrvNzKW2hjoXATiyS9r9Zwu0iW4pWGRfbtIuCxTYMfOzK3imafyl1TadPhaRutqltj3S8VdmfxwHWxoQ85qyOfK2XkumXenY9PJEzKaXpxrpDYdu3wAAABkRuAE/ZNt8a6wFQsNXLKW+4Xn3n6WGV6wiWjFPmnWcNfPKtEVYroJXelOyhjoL936tre70ptZ3RdVTRXeTNoaCEkkxu74zMtwjjd5ga+Adx7ZAk2PV9tT69SN5zETMHi+1oqj/exMISt3d1pwu1UgvG3T7BgAAGIDADeRavptv5Ur1CmnmEunRG63aWbWid/9rafAtwnIZvBrqpHXfkSI7raqe6lq+76XM+4GPRler1HnY3qtUhdcJ2lrxrjZJrpTsstv5xY/mY4M9ZjAsFZZLzoHeEwvpEt1SokuadnRvIz0AAACMCoEbyKWhukLnKiCOpZbdNq141rEDu49nu7/2aLlJ6aUfSG88KsVavEAsq65XLLAKei7WVheWSom4FO/yTiikThyE7L87D9t/Fw7StT0XcrUGPpvHdCU5rlXLE11SrNn2aA8Wej9H7L1+y2ez348bAAAAGY2DOa7AJDFUV+iqlXb5lnv7rZkd57LZIizeOfT+2qO1/TFp871S9KBVXVMV7u5O6dBWqXlH79rqI9EVtQZywUKr5Cfjsqp2vHfLrGCBN+XcR6lp/DWrpY4mW6/e0WSV7dGeqMn0mJ2HpEXnSQvP9mYtTJcSnXZ5V6utGz/rJmnZu3P9CgEAAKYcyhdArgzWFVryvxrsl1zsrz0ablLaep+FQAUkJb0p3a5s/bGk9oNSc6FVZI9EuNwq24ECe/zudlvn7ASkwjJ7vsLS3L/GTPxoPjbYYzZusRNEDZuswZ2blGYul079hK3TBwAAwBEjcCN747UR2HiRTTW4dY8/1WC/+LG2OBuRXVbFTiakZMye1wnZ2mpJSnZbMG5vPPLjGa609crNb1hVu2iaekJ+PGbTqqctGlnDsiPhR/OxTI9JZ/GBxvp3HL9TAQCY9AjcyM5kaQTmp3xVg/3kx9ribMRapc4Wm0ruxr3H9xp8BQusGh1vt3XXg53gyFblfKn2zfa5Tnbb1OtklwXtshp7rto1uT+pMB7QWbzXWP+O43cqAABTAoEbw5tsjcD8kq9qsN9ytb/2SEQP2PFSUlKgdya5m5ASSfvBCdq66+4jXFudflKhvcGq2aku5bGIVFLtz0kFjB9j/TuO36kAAEwZBG4MrX8jsFSITDUCy7Qt1FSVr2rwWBjL6cduUtrzZ2tWpoAUCFjYTibsxIVcu7ygRCqtOrIZA6kpvcm4tPxSae/z1lgs3monFeac7N9JBYwPY/07jt+pAABMKQRuDG0yNgLzUz6qwSM12nWj/acfu0nrFJ7rAB7ZJTVtkWafYGu04x2y/bEL7fpEt30vmmFrr0e7tjrTlN6Zy6Tj/1Yqnc2a2qlirH/H8TsVAIAphcCNoU3GRmB+G8/NqHK1btTP9aepz1zVCvtsHdpqzcuScbs+WGDV7/Ka0a+tHmxK74ENtvf4qdcRdqaKsf4dx+9UAACmFAI3hjYZG4GNhfHYjCpX60aHfZxP2GWjPdmQ+szF221KdzIudRyykKKkpJBNMZ+2aHRT9PtP6ZVsrXY8JpUdZWFnvE/pTcZtD/LoAavG166xJm8YubH+HcfvVAAAphT+QsPQJmsjsKkmV+tGh3uc3c9LD31GKp1le1mPpvLd/zNXWCo1vGKPlxIskqYfPbpqevqU3vZGqWmzfU/GLbQWltnrGK9Terc+YCc8Dr9m0+uDBdL0Y+yEydKL8j26iWesf8fxOxUAgCllnJZvMG6kGoEVV1ko64xYMOmM2M8TuRHYVDKSdaOjfZz2RqltnwXYUKGthy6psmCx7jarjGcj/TO35bcWfhNdsrK27Huy2x7zxe9n95jpUlN6u9qtOVvbPmvAVjzTvnc0WcDf/9eRP7bftj4gPXq9/dsrmiZVLrDvjZvs8q0P5HuEE89Y/47jdyoAAFMK/0fH8FKNwGpWWxhp2mrfa05i+5qJIpt1o/HO4deNDvY4rmtBO9llFeJgoRQI9la+Oxqtgu4msxtv9QrpTR+TIm/YY0q2VVcgLIWKJafApuQ++1UvjI9AuFwKhaWGjTZtvaTa1oQ7AfserrQAVP9s9uMdC4ku6bmv2YmNsqOkwnKvIl9hzeNiEWndd3vXuiN7Y/07jt+pAABMGUwpR3bGcyMwDC9X60YHe5xYxIJgsFhKeME9FV5H23m5cbPU3W7hOlQoKeBV1R0p4ErxpFWnN98jrbo8ywMh+9yW1kg7n5LK5qi3ci47cdDVKlXU2mOPl2nlDXXS8/9mswUCBVJkp1XjS6rs5IcTsBMHh7fZjID5p+d7xBPPWP+O43cqAABTAoEb2RuPjcCQnWzXjVbUDr3V12CPE49JsTapq8Uq2/tesrXFJVV2+6LpI+u87CalXU9btTZYJCnYbwq7Y8Ez3iEd3GiBO9vtzpyANO90afPddqJAsop8osvGX1AizTrOGrWNh07RqSZ1DRvt54IySa7U1Wbr2svnWuguKLWTHtEDAx9jtFvBTTVj/TuO36kAAEx6eQ3cTz31lG699Vb95S9/0b59+3TPPffo4osvzueQgMkptW40Um/rRMtrbRp5V9TCdnGVhcznvj70Vl+DPU7rfqltr4XisjlS8QwpmbAqcSwiVa3KvvNyasux3X+S5FqodJMW4J1g7+3cpCRHCk8b+TZlNSdI1cfaVPeuNqtqB0I29qrlUqBwfHSKTm9SN3O5vb5Ep51sCBbasWlvlCpLbNaBHDvx0byjN1T7uYUbAAAAhpTXwB2NRnXCCSfommuu0Xvf+958DgWY/FLrRlPhq3WPha+akyxsb/tddluG9X+cPeukgy/3rqVu3WPV4fK5UnG11N4g7X9JWnXF8J2X07ccm3W8dOBlyY3bV8K1kOkELYgmu6SCYql61ci3O6ucL9W+2Srx5XPtsVJT4CU7mTAeOkWnN6nr7pDkSJ3NdnLACdhsgliL1H5Iatlpr33r/dKORy1Uzzo++/cVAAAAOZfXwL127VqtXbs2n0MAppZM60Yraq2yPZItw1KPs/52aeeTNvW7qEKKd1lluzsqNW+3buJu0q4/6s0j23JMsq2/Dr0muQmb+i5JCkhutz3WgnMszI90u7P0Sn3b3t5Kfaylt+KfqVP0WE/NTjWp6+6Q9r3gNbfrsOMhx05ydHfY8Q4WSnNPtfemO2onEzbfZ13Ma9eMfis4AAAAjNqEWsMdi8UUi/XuxdvS0pLH0QATVP91o807st8yLP1+blLadFdv1/LCUinUbY3O4l0WBlv3SHPeZJX0stlDjyvTlmOLzrXHb9tn4T3ZJSkoFRT1dnTeeMfIxy4NXfFfdvHAym8+pmaHy63yfvBlO67TjrYqfOseC97JhIVvp0BafKFUvdy7X4VV7ve+IAUz/JofbSM7AAAAjMiECty33HKLbr755nwPA5hc0rf6cl1bc52I9U6xLizN3PBs9/PS4desMVp7o4W/QKEULpAKEvaYyW7rnl1QPPx66NQ4QiU2bTo1hmPeadXYw9utAj19sbT8PdKK91nlfLjtzoZq1pZtp+j0qe7ltfa8sYi06xmpeZf05k/5E7or50tlNdIur6O649jxLp5hxyK63yrcZXOk8pq+901Nk4+12FiLpvW9Pv3YTOWmalP5tQMAAN9NqMB944036jOf+UzPzy0tLZo3b14eRwRMAqmtvlp2SS27vfAct3XCJVUWMDM1EIsekBLdtid0d7s1HwsEZR3EQ9btu7PZpmgvfffw66HD5dbtfOfj9ljpY6heaUG7/aD01uuleW+1UNS848i3OxuuU3T6VPeSaqs2p46RE7TjVlAsveObuQ9qQ3VUT3ZJxTOlUKfdLhHre99g2PYbj8fsq7/UsYkekJ6937/K/XgOtDSUAwAAPptQgTscDiscDud7GMDojLfg0TOeiAXbnU/YFlzhSusInuiWWvdZqM0UmEtn2+3i7RaKEzEL3sGwBe/UWuPS2ZnXQ/fXHZWi+6RWb011sNDG0LZP6oxIJTOlBWf3hm0p++3OjqT5WWqqe0GJtHedvcbCtGPU0Si99jtpyTulo88d/fMMZqiO6qlp45Id93ThSjsJEdttxzJd6tiU10p1v5Y6mvxpqjaeA236rAUaygEAAJ9MqMANTFjjLXikj6erXTqwXoo2WeOzwlQ12O39cl0L3l3R3pMFtWuk6cfYdO9pR1v4a2/01nB3WhAvmyud88XhX6OblLbcJ4WnS4mE7YddWGFBsaBcattjIX7puwdvfjbYdmfZhP1M40mdHGndY8eos8leW3F1b7APhaXSGimyw7qDL3rb6E6iJOM2RT96wE5Q1K6xUC0N7Kie6LLnDVfa+7LvJRtPYYYKf2GZTUlv3WPjSj82RTMluRa2R9JwLlvjOdD2b9BHQzkAAOCTvAbutrY2vfbaaz0/v/HGG9qwYYNmzJih+fPzvB0PkCvjLXikj6egxMJYe6N1/m5vsjXBRdMsnJUfJRWUSbuetKnTgVDfkwWnXic9er11JC+pttt3Ntvjlc+VzvumbTk2nFQVedYqm/7ctNkeI1XNrVxg4bkww1rtkTY/y+b4pJ8cScZtPPGYVDJrYHO2ZLcF25b60TUg2/qAvR+HX7OKebDATmScep209KLhO6rPOtbOizTVDTzhMO1oq7wffHngsZlzyugbzg1nvAfaTA36UmgoBwAAciivgfvFF1/UOeec0/Nzan32VVddpR//+Md5GhWQQ+MtePRfj7x3ne2ZnaqQxjsluVKoUJp9ggXJPc9b+K0+1sJH/5MFb/9ab2Bsb7TAOPtE6dRPWmBMf+7BptSnN24LV9gU9VjEQm4obJcf2nbkzc+Gk+nkSFeb7Qfett9rPJY+ddu1anxZjbcn9iDjG8zWB+yERSwilc6yhnHxdvtcPHq93WbpRcOfVJCGPuGw5MKBx+bgq0fWcG4o4z3Qpn/eMjmS1w4AAJAmr4H77LPPltuzty4wTuRyrfV4CB7prycWsecrr7WqZ8dh28Ir3mnh1nGkhGzNdONmC5GdLVLRdFtDHQgOPFlw2vXSMRdknhKdmiq97y8W8LqjVgEPBKSZy6UTrraqdqpxW6r5meP07ard2WyP1bpn8PdkuOZnwx2bwlJrTtb/5EhRpTR3jbT1XptWP2NJb+OyrhYLyRVe88ZMzdkG+zwl4xbuYxGrRKdeT2GFzSpo3i6t+64d20Bo+JMK6delZgJ0RW3MlfMHHpv+x7y/bBrODWa8B1o/XzsAAEAa1nAD6bJda51tKM938Oj/euIdFsCqj7eO5F1t1tisp/O1a1Ok2xu8YBzq7RQerux93P4nCyrnSxW1XqOucjsWqanSjXVWRXeT3trjafZ8B16Wdj4lnfkvVoGduUyqf1aqmG/7bIcr7XnaDtq2WMECaf1/W0fwXKx/zzR1vPkNadbxA0+OzFhsQbv5De+4BHsbl81YJnU0ZG7ONtTnqaPJZgWUzsp88qCkWjq8zU5YzD+99/LBTiqkrmuok169c/jPsJ8N58Z7oB2LZnsAAAAicAO9sl1rPZIGaPkMHpleT9teC7p711kTMAUs/MZjtn5YSbtvUhY83KSFka623mnoKamTBfv/Kr3y877HQ5J2P+cF2YQUKLAu5l1t9lzTF9le0q27pae/aE/Y3mAB9ODG3mZf4Qr7WY501MkWxnOx/j3TsYnstDGknr807bU6jjT3zbZuurRKqlxkle9AyI5BpuZsw32eqpbbMQ+VZB5jQalN0Y8eOLLXNdjx8qvhnDT+A62frx0AACANf00A0sC11uGKvtOnOxpt+nTDqxZo9q+3qu/MZfZ9/3q7vKGu7+OmgkdLvQWNPs/pBY+qFbkPHm7SpkdHdlo3ajdp4aG81vazjjVbx23JQmSiu19V1+2tfFfMl5S0QJ3+GrqiFp43/bLv8SiaIb3+kG3nFZ5uzy3XHj9UYj+37rPHLptroeeJf7WKe+1bpBnHSHKkpm1W8XaC0tHvsGntHY12/xnL7bX95T+lw9u95xjBscn0XhfPsLF3tVqTtP7vV6jY1rHPfYu9luhBq9zXnDQw+GfzeWrYZCci4u2Zx9kdtap+6ezRva7Ccnst8Q7bK729wT7D6ccqtTa8ZrVV3Ju22vdMr2kkUoG2uMoCbWfEZhB0Ruzn8RBo/XrtAAAAaahwwz/jbd/poWSz1rphkwWskTRAy2UlbSTHc/tjtr9yvNOCaWpa+IxlUsVc6dBrtn47GUkLlgnve9DWWLuuhbZk3J6vvdHWGxdNs+ta6u3xgwVS9are49HVYtPTAwVS5yEL88m45IRsvIECC4GxVqskJ7qktgPS/LOk4ulS5UJ7nmiD7Q1eUCY1bbEwlIz3frmudPAVC8czl0lL3i0dncW2XIO91+FKq2pHdtlzp16r1HtypHaN9NZ/tJMDQ70PmZ7Dde0xEzEvDLfZe9H8hr3G9MdwvYp/1Sp7zmykP2dHo/13e6Mdq0DIjvXu5wf2C8hVw7n+ct093g9+vXYAAAAPgRv+GG/7Tg8nm7XWTVutMjxjydChvP653rXMlfNzEzwaXpU2/NirvCatGlu1Qlr6Hm+LKC8sVNRKbzwh/elWqzBXzLfnSnbb2u3GzRbuknFJybSwnf56Et408EK7PBCyoJhMelVxx8JnqMjCdMW83iAZKLRu3okuO5bxmPc8yd59pZ2ArRVPdNm09kTM1mUnYr2hNNXALRCyEwadh+yYJrpsinUybsHddeyY798gbblfWvZu6eSPDX1MB3uvHcc+o52HLXC3N1lIjbVJh7baf885Zfj3KtNztDf0DcCpQLf0PXYSJ7WtWmoKeHuDvd5TP9l73LJ9zu4Oad8L9l4VVtoJkUS3PU/bflsC0H8d+GgazmVjIgRav147AACACNzww3jbdzob2ay1DgQsOA4WyuMd0oEN0nNfs+nH/U8yjDZ4bH1AevoLVgUOhq3xWGezdGi7tPk+W+scCltIjXdY5bnzsP3ctl8qm907vliLVVad9H/6jmwj537chE1Jnn2cheC2fVLLHutWXrPaqvMv/0RqPyDFolbZ7opauE/ELKAHUtPIO7xp7cHeKc0dTTaWZJcdkz1/ttcX7/Aq2Ambtp3+34mYN1ZHUoc30KRNT+9okF7+qXT4dencr1nVPZOh3uuSaqn6OMl92a7f+2LvGurS2dIL35X+9HXv/Q0PfiIp/TkSMXtt6QG4q9UCcGSHdMonpM339N1WrWrVwG3VhhMut+N38GV7ruLq3hNDobDkVkjR/dLuZ6Vl7xq70EugBQAAUxiBG7k13vadzlY2TZ5mrpCi+zIHtfYGq2zHWqzrdNlRmU8yjDR4HHxVeuqL1uysvNaCZbLbgnSsxZuiHbRp2E0bvGniXtW5s9kqw90ddptUCHa7LZgFCi3s9gnbaeHb9TqWdzRLFXOkeadJx15p1d89z0kv32Gvz3UtSCe6UgfMq5x3S4mAFPSq26lp5qnbdUdtHI7sdTXv6H0vimfaMU0F7O4OC909Y00bc8KroicTUrxF2vG4dP9HpYv+y7Yc62+49zreLq34G+moU6T1P7JjUj7HTgoc3GhhuWSmVHuaVeb3r5ead9l9ymb3zjSoWi7te8mCdZ8A7NqYpy+2inRns/T+B6Q96wZuqzYSlfPt5Muup6x7ev81+d2tNq62ffnb/xoAAGCKIXAjt8bDvtOjkc1a6xOukrbeNzCoua5V9TsPSTOW2n0d58hPMrhJ6a8/tqpkea1VTF3XQnNqi69QiVV0D22zEOeELJy27rOQHe+2n+VKCvYGvkBQChRLXV4A731SWQIOyNZ0eycbZhwtnfAhu8n6H9oxiB6wPbx71n4HLIDKkbo7JTfuPV9SKiixY5no8IYStvXRqe7l8Q4L7Y7sREJ4mjXYcgIWtN1u9fZ47FeRT3Z5Dd6K7CZOQGp8VXr6y7blWP/ZFNmuq996n4XhrjY7xqk15MXT7baHtkrzTreq+K6npL1/toZvIW/bslnH2wmTw6/bEgC5NusgtXd31Qo70dBYJ7Xulea9tXcGRMvukU+9dgI2ns1324wEaeB+4dXH2ed0rPa/nkh9HAAAAHxA4EZu5Xvf6SORzVprJzAwqLXutVBV5K2rTj/RcCQnGSK7bM12MGzBqTtqU467WnuPX/yQVUJDxdaIKxGzqnRqyy8nIAunrqS4l6dD1vG7q8XG12c2eWrsCfUE74ISacX77ITBfVdLr//BqzinB3VJSloAD4alYFBKuN5JgqQ3K6DSOwnQaeGrsNyalBWUSfXP2BidAguz7Q1eBd+R3KB6Q7006PT3RJc9fkFp79T6wU50DPdeFxRL2x+x9zneYceiu8Ome3dG7P1o2W1rrxvrLEgHElJpjd0mNbOh9i02xTsZt8Ce2rt75nJ77cn44FurjabnQc0J1km9o9FOFHS19n3OYKEUH6P9rydaHwcAAAAfELiRW/ncdzoXhltrnSmoxTvstda+te/ezSlDnWQYqgIYa7VqdqhI6myROg56e2UHJXnryV1vKnXqv7va1BtIk4Nsl+V4FeVAhutT1WOvm3i4wqq2NSdIrz8ibb5X6k5/jv6vp1tKBmzNcLDIqr8zjrYp8Mf/H2nBWdITN9nU5oJiC+HtB+0EgBu3qdfxqNTW5TV2C0jypqAHCuw1JeOZn9/1Tii4SXsdJTOHPtEx1Htdd481Ykt1aHeTFqrdpPceyKrfjVtszKU1VjlOxu15UzMbIruk2SdKoUKbwh8K22vu6ejuba1W9ys7WXKkPQ8q50u1b7ap7OVz7SRE6jklG9NY7H89Efs4AAAA+IDAjdzKZi30WPzBP5ThprkO1+Spf1CLRaSXfiAVlmS+/WAnGYarAIbLbSpy52FrqOW6VslOeOuuXS94OkFvj+Nmbz3zUIL2+lIdxd3EwJs4AW9tddDCZNUKC8h/+JStAx5OqMjun4zZ+uWmuB3z+ues8VsgZCchUidkgmH7OVjsdTvvso7gTsheX+dh+56MW3BNxgd54oAkxyrjRdMscLY3DD6bYrDPgZuUXvu91z29RD0zBJyA1/QtbrMI3KRVrUtm2c+BkIVbqXdmQ9s+W1cd2ZH538NgW6uNdjlC+nT51Lr/wlI7JiPdhm60JmofBwAAAB8QuJFbudx32g8jneY6WChLD+Vu0tbwZjrJkEzaHtIzlvRWoZ1AdhXAqmU2pshOq2In41YNTXSlNTvzuoAnOrII2x7HsTAbbx/sBl6V2LUQPOs46fWHpb0vZPf4XVHJaZeUlBSQCots/+/KBbbndNt+O/a1a7y17pW2R3jLXjsewUKp8miptd4q9oECC7TyqsyDVdeVtO3GJFtnHSiwMB+LSAc29n3/hvocFBTbFnDytihzQt7U9oR9pdadF5RYaA6GLHiXzemtJEt2fcch6ag3WfBueNXe6/R/D8GwFOr2xpWjngf53v96ovZxAAAA8AGBG7mX7z/4BzPSaa7ZhvPBTjJE6qX9f7F1zW5SevIm7/7vkbbcl7kCOHOFtO9F6S//Kb35U7ZP8/4NFtbinV7wTA+crr2GVDO0jBzvK2lrnJPe1O1ETLbO2/G+AhYg3bRqckGpTXfuaLbu5Fnxtv9KyrYFi3dZ9+6iSnuNXa1WjU8PoOW1UtM2m+peMc+GG66w24XCkoq97cL6rxvP8Dodx05K7HvB1oe/9AML6qn3b9bx0rbfDf45qF5la7NTFW3He2xXXnU7YcetoNSeq22/Be2Zy3vfy/YGe9/a9nnDCtn4D2/v3U6s5iR7/1/5We57HqRmYTTv8E4eSJq5dGwC7kTu4wAAAJBjBG7440j2nfbDSKe5jjSc9z/J0FhnoS1QaI2zKuf33r9hkx2TGYvtvp3NXvdqr+qZqoa21Ft19OjzpO1/9KraXiMzJyhbo52Q3C7JTVUS05ukyW4fCHkXedPPA960aDcpKWgBKJmwAO4mvfBd4N0nYducFZTZ82UrmbTKb/FMC5fRg9bB3XHseB/eLk1bZJ3OUydkFpwl7XnexptqMDZzmXeMDluTsmTX4M/pBKWCIjsGsYi3h/iJto489f7te8ne56Lp0tw1Az8HDa9Km35px69ourdPeNy+HEdyA70nJwrKrBqejEtHndq7fr+9Qdr9Z+suX7lAmr3aZhNEdllFe+Vltia+cr5dtvk3/vQ8aNySn6ZlE72PAwAAQA4RuOGf4dZCj6WRTHOtnD+6NajpVcU/f8eum/MmKRDoe//df7JQXVojHfir13k8aqEyELR9mAtKbR3z/vWS6+1hrYAF+EBaNToeU08Hbyfk7X/drwKe3mTMcaRpR0uxZgukCa/RmuOt7XYce4zU/tdFR9uxiezM0NF8MAELvqU13nZYstcYi9ja6sJSq/Ie90GreqdOyLhJ6cnP25Ty9AZjku0vXvdLey0FZRa8kwmvYp/oHW8yKRUW230TcVt/ngp94Qpb1713nd2u7YCNM9XELLWV276X7CRD9GDaem3vpQVDNs5pi6Rzvmzjrvu11NFgz1lQYpXt6H6pZLYF/mBIClZY5bxxk30te5cdb796HuSzadlE6OMAAAAwRgjcmBpGMs01ssuq0HIshBeWWegMBIZfg5pa39152EJHoF9F33EsADXWSbuetOsLK2yrKTdhAbh1nwXVgFchfuMxb711wBqRpdYpp6aDuwFZtdtV7/ZZ6VPM01KyKwuDRdOtAVt7gxT3upwHC3unk6eq2dH9NiX50Ove42chGOrdmqyrxaqZybh0cJNUXGlhOtX9O30dfPMO21rt0La+Jyqk3q3QimdaaG7eISUiVtkPBCWFLYSXVEtzVttjpNa7p4sesJMbsdfsBEBBia0fT23TFfDGXlJl76+btDXbbsKCfbzLxrXsPfY8sVZpxd9Ie/5sa/WbttrJlMoFFrbTu9Zn+uxk0/Ng6UXWcC56wE7G1K6xcQ4m303LxnsfBwAAgDFE4MbUMJJprlsfsD2YE53eFOugBeCjTrWQMtwa1OHCfdlsC4KJLpsyHYtYOEpt8ZWM29Zbu56xy1r3eHf0trvqkRyi4jzIFYkOqStpzdDcbnvu1BT0RKd613t7X50R6bUHvdDmZH7MAU/tplXK41LHXgus0YO9j1M+V3rlF9Ly99p9UlOfowdtKn5klzTHq4J2RW0/csk6fjvypsUn7ThLsup/wN6fstnSwVfsBEIiZkE1GLaw3PCqbesVCNqJjlChBeTOiDT3zXbsAyGpvck+JwVeh+94Wkd4ycZ+8FWrkIeKbH30cX8rdUWkDf9j08iDGX69ZvrsDNXzoGia9PD/tS71iW7rZj79GLv90osyH//x0LRsvPZxAAAAGGMEbkwN2U5zPfCytO47VpktKPOqs91WCX7jEbt9Wc3Qa1CHC/dtBywMpsJXx2EvOAa8bbqSFhQj9d4a4fStu4aqMjtSQfnQ+2TLC8HR/RbelJqennoOL7i6rgXPRMyqy0Fvivegnc37PUcwbNO2u1vUUy13va7lSlr37m0PSgc3ekNNWECsXGCBed9fpN3PWwAvnWWNzlp2W+OxWMSmeheU2EkLJ2ivSbLLAoU2TT5YIO190V6bE7T3w5U3jb3FC+2udXmPRSyEFk2XyudJLTut67ibsOdMvaZEzCrn0YPS4a3SgnPsPTrwV6llj7T8UqvCx9ttGnl/g61fztTz4MDL0mM32thKZ9k44+1WNX70ertfptA9XpqWjbc+DgAAAHnAXz6YGlLTXIurLLB0Rry9qyP2c2rq7gvfs4BVMktW0XQsaIWnWdja82cLEFUrBl+Dmgr3LfUDp2Gn9l4umibNO8suS8S87uDe1lcpyU4pdjjzXtkZX6P3FSySFBzihvHeKdJ9wk+q4VrAO9GQUG/1u9sbRxZV7mSXhe3UPuG9V9jPTsgq7S07LVQ2virNWO7ta91ooXfpJdKMY2wGwFk3SWu/a8e0dY9VqlNr3AMFvVuYOSHrGN6wyZ473mkBvHimheuORu9khOz1Nb8hHXrNpqe3N0r7X7IAv+oyO9nQGbHHcxPeFmAJe9zUyZJEl3Roq1RYbt3lIzulrffZZyeyK/N737p78M9OqufB7ONs3/MXvmdhe9rRVo0PhOz7tKPt8nXfzbwnefoJn0zGsmlZ+mtKTaEHAACYQqhwY+oYbpprR5NN3S2dZRXR1i7bPisYtsAWDNv0ZDcx9BrU4dawls6y9dOKW9UyWOQ1PxtMlt3BU1OsUxXjoW/sVX4DXrAOettvpfbgDngnANLGkEjt/Z3pNYd6g69STdfkVYW9ddSOY8dbAbssetCCeUGxtONRC4ipKd0lVXbcOg/bGIOF0sorpD0v2NT3eMguC3prtwMBq1y37bNK+YwlUnenzVQorLDnVFDq7rCxFJRJ3WkVXidoJxWS3baeu/pYe6+i+71jFLexu0mrnLuuVFhpQb35Dfsste61Keszl0qdLTYzoGrl6NYv734+7bPYvw9AwNaqH95mt5t/et/raVoGAAAwbhC4MbUMNc217jcWukIlFvrK51qg6tmzWnb5wnOGX4M6ZLh/t+3D/eqvrMKa9DpsHzF3mH2q+93WdW0Ns7xGbI7jTb3u7n29/e8z6MOlB3zHKsJJr7O65K199qrnqQDdHbVKbWrKdslsC7OJbm9d9WGrFqemPs89VZp1rAXbzsM2vdoJSmVzLSCX19he3oVl0swldhKjaXPveyjX2wKt2zq9z1xuwT8Z71077wSkvX+259rZblXuokqrpCfjVg1Pxq2qXVhm49z3F++xK+y1l9bY6+w8PHDf7WzXL0cP9H4WMykotdcVPTDwOpqWAQAAjBsEbkw9g21XVuoFvni7haeCUqmyxIKbG7fqaHeHNOfk7J5nqHC/8ylrDpazsD0KjmPTtmOtVsmNd3nrub3QHgh7+3VnM6U9/TUEvPvJm1bu2GMEvNDtur1V9HjMAmzpHAu1TsACarBaatvrVZK9tcjhcmn60dbBvKvF1mmnd5DvjEjhMm+bsG57jupj7b6JTmnPi1ZVj7dZkHUCViF3XanrkL3/JbNtL/CVl1vYb9pq16casLndNiOhpMoq6B2H7KRFyWxvdkHcPkNz32xhd/rR0rFXWmhPVZSbdwy/prn/Z7G/7qhdXzo789sxmqZlbvLI1lsf6f0BAAAmIQI3kFK7xjpAN26yKcdOQJLTO5W4bb9Utcpul63+4d5NWlX75TusWl5QMvha2xHLNrh7W4ZVLpCWvMu279r7FwtmqapxIOQ1YPP26h7RSYGkvSYnmLbu27UtvOIxC/o968O9zuzN26XoPptVUFKVeal4NlOlS6ptLXbzG3bsAyFv+r5s/XbssJ00iTbY2DojXhO2pDWva3rdxtXRbGE+VGRhtWiGBdziKu+x2q16neiSugJStNHGXFAq7XvR1nOXz7XPTFGlfQYa6noDcLzTHrtquVWj+wfgjJ/F1GtNWhO/4T6LI2laNpKxZXKk9wcAAJikCNxASiBkVcFHr7cAWFJtAao7agEnXCmd+smh90AeSiqU7HzKmoWFwpJTkMMXkL739lA3c6RAkTRtkXXrlmPhLpmUOg9Z8HS9vbiLZ9ra9kTncI/aTyCtaZhrz+F6ATtTxTzZLXV5wTvRLQWDNm27dJZNhZaGnyrtBKVYtHeKeGmVVcKbttj9K+ZZcHab7HV3NnmP620xllqj7rrS3nVeUzl53dq7bZuyaYul7Q9ZszTX9WYEpF6X7DHiMZtq3nHYxh9rtfd+3W3WuK1iXu/nav96ez2nXtc3mObqszjYbI50Ix1bru8PAAAwiTHfD0i39CLp7V+zCmosYpXKWMSqiW//2uB7Hw8nFUr2r7eQ5AS8bt3ZbLOVpQEdxwcRnia99bPSrFXSrielrfdL9U/bdOkFZ0g1q20qdPH03vXII5bUwGZvSQ1s5ha0CrQT6A29bXtsivasYy2wpnfTTk2VrlltJwKattr3mtXeHt1Jaf6ZUlGFXd5xqHfv7Oh+qbTaXnfAa/KWqoJL3vkKb1u2ZLdNI5c3yyHZZVuMHdzYW70PlaqnSVyw0Kapu0mbtl5UZU3TogesKdyWeyyQVq20reICQftetdIu33KvN81e9r15h81AePNnrKt5Lj+L6dzkyMaW6/sDAABMclS4gf6WXiQdc4G3D/QBWydbu2ZgNTHbNav9Q0lLvYWSeIfkBtKmXh8hN30edmqLrwwV7xOutlD60g9sunP1KtuKKxCysXW39O5xfXjbCBqxDSZo65xdbw9weeu6nYC3hVnSe75Y73CLZ9q07Tkn2xZZh7dbuJasC/hb/5/ty5069m5SevImq7CGK2wN9f71Vml2Ana8nYC9VteVDryinnnriW47Tv33Ow8E7SvZJYVnWtW/q8WmS1fU2uM0bbXxB8O9jxfv8GYOeFr32lTrinl9p8FL9nN5re0BHtll0937T82ef6Z0/FUW3Af7LI5WZFf2Y8tUKT/S+wMAAExyBG4Mbbw0QhrrcQRCA7dbSpftmlU3KdU/J9X/yUJl9ICtDS6ssDAYKvIKvyNdJ51JvN9/O+qtTqcqjEHbp3rHY9blumi6d5uATc8uO8rG2NEsxdq86dKu3W/YrcYGk7Dj4CbTxuh1Kw8E7LXHYzbGZNwC/q4nbPr2ordLf/ystPMJb911UiqeIS06Vzr5Y1atjuyycN3eJFV4jclKqqVZx9t9Cr2qa1ebTXfuau0N04mYTaVPHZv0Y5iMe43eHAvRZTU2ndtN2uPEO21dd7LbTk6kZi7EE1L7fpu+XlhhxzPeaffJpLDU1onv/6v0+h/sOYoqvZMRCenAXy20+zE1O9bqfX5LpM5mex9CYZuy7ji9Y0t1ih/s/sO9tsHuDwAAMMkRuDG48dIIaSThdixCebZrVlPjfv2P1shLjlV6i6ZLBUX2WN1tuR+fpAHruQMFXrB0rZFXImbhOtFpgW7fX7zQ5DUxS3R5Xbe9juJO0KugxzM/3XCSCa8qm6qWJ+yyrvTqeWrMAZvKHgxJf/qmBWW3254/9R6//FM7pnNOtmnjHU1SU50Ua5ZqTrTAHSqykxzBQnvcYIGFya5Wey4nKAWSNg09Nb5EeuD29uV2XUntNgshNQ29o8nG1VOVT0qJhHdew5sa390utdZL2x+xINsdtep7f11Rq5DXP2OV/GS3dGhb757kxTPtM73lXmuClsvPdLjcxrbzcXs96fugz1zuTZUv6jutv//9Q0VDv7ah7g8AADDJEbiR2XhphDTScOv3yYH+08NT02hTa1YbN/WuWX3he73dtyULL27SKompNcs5lVaFdkI2NtcL2a5j1zlBOy4HX7YO5JF6C4duwo5roMBuk4hZdTdY5DVQk3e7UQ7NTdhe30M2dvMuDxZ4226127rrZNzWSxcUeVO8E7bH9d51dvJgyUVW2e5stnXO8ZhU+2brKF5SJbXus8cuP8oqt4e2eycTutU7A8AduOQ8NS0/4L1XbQesElwy3bqgB4rsPU3Grfldd0xS3C6btsSm5hfPsM9KdJ+d3Ji7JnN39cpFtmd42z473uHU3t/ddgyckC1xyPXU7K6oHcO2PTb9O1hoz9m2z2Y5lFRJC8/u3dKsv2w6x9ecNPj9AQAAJjmapmGg8dIIKdtxNLza25CspEqaucy+719vlzfU5W5Mmdasuq6FvfaD1lm74VVpw+3W+KrjsK0RLpouye1trBVrUYaE10+mvbEGu13AqohBbwsst7t3TbLrSm6X3a5ohoX9ZFxq9sJpqmKaej/jMW8KuLwt0dS7x/Soud469SwSe+lsm4Z8aKsX8pNe2A71vlbHsWp0tNFeZzAkzT7Rmq1F90v7N9hrLK+1kweJmG3T1bhZ2v2s7Ng7FmQDBd74+q9V946HE7DjEO+0inn1CXZSItktBQrtceJd6jnZUVBqJzMKSm1M1cdK4en2GWl41bYiS8bte+MmOzFQ+xYL8cluq84Hw737hJdU2zry5u3WNC1X3KS09T6peJrNKOhq8abGF9jnuP2AzRhY9u7Bq+qpzvHFVfZaMr22ZRezHzcAAJiyqHBjoPHSCCmbcTRs8qYUD1NxztVU3P5rVtsbbIztjV6lM9A7ZTkQtDXEwUL7cmRrgZOu7Xc9rCzLyYGgFCyx4xHdJ3XJAqYSaQ/h2L7aZbO9KcotNha5XtMwTyLW+7zJmNTRkP04ciXeaWNs2eNN9S7o3WIs0W3T8Ls7bVzdrVL9U9K806wDee0a6cAGq2rXPyeFy6QFZ9u6+Y4maeeT9rpLZtv31Ot1QwNPKLgJ2fZmXlO7ghILv4kOaeE50sFXvC7ojnduxPFmBCStw/vsE21MklS90qaLT1tka7pb91iIrznJAmlHk80wKJqmgSdaHOvkHovkdi106t9X9So7DqnPcVerndyoXGCBebD12SmpzvGpGSb9XxtbggEAgCmMwI2BxksjpGzG0bTVqnAzlozNyYH0NavdHdZ8rDtqzbGKZtjeztGDdtvyWguLwUKrHDqOTZeOtwz9HCPhBKWimZJce/xk0oLjgCnrjk1pDoRsOnasRZmDdP/LBgvbzjDXH4HuqKzzd6h3/28nYGG7q8Xrmp6anu5Y6N3zZ+tMXlptFeX2RnsMN2nV4dJqe/93PmGhNzVlPRUwnS5vPb0rqUBWrfYaxrlJm6FQ+1arUndFpbmnSrNOsCnT3W1Sd5dVr8NlthZ61nG9YVuyz2ooLB3/QZsu3r/PwP6/epXxDjsx0n9qdurfQWEO10Kn//sKV0jzqizUJ2JWWS8otbXk2fw7r15hJ7XGQ4NFAACAcYTAjYHy2QgpvfFZLGIhpTtqQSM9DIQrbRyp9bW5PjkwWAO21JrVzfdLja9YaJMjOQdtrJJVIxPdFrxSXa5DJVbVTu3XfETN0gLqme5cVmvBrnm7dPj13uniA4Kwt7d0ZLc194p3HsHzS72B1wfxmJ2gKCj3Zgt4a9DjbVZpdrzma45jx7y0xlvT/aI0Y6k1gYt3SjOOscZw3VG7rLPFpqEXTbexF5RKlSU27T+yQ3ZcE1KoQApX2fsYDNv7Nv1oqXxO7xZpqX8bqbXJnc1S5A3774IS+/eRruffTGXmEz9FldK0o+0xOrzO6qkTNV0tdqKmcpHdLlf6/zt3HK/C7umMjOzfuRNg6y8AAIB+CNwYyO9GSMl45j2u+zc+C4btNoe2W7DqaOrbuTlYYFXG6L7cnhwYrgFbS720/4W+e2e7CanbC2NOpVRY4o3J6wJdUGKvp7s9B/tapyrXjhTda825gsV2bLpSVdr+vGZlnU0WDoddP54Nn6aauwk7xqESWyPtyF5jwgvZybj3mfRCc3uDnRiJHpQOvW4V7aqVNsPAcXqXF+x80useHrXgK3mN2Q54TeJCdlgC3vrshKSSGVJRhVXCm7baVnFu0gL8zBXeuueYjbNohu1bPmNp7+NL2f2bqZxvjd4SnfY6O5p6p3aXzrFqf+2a3DYfo+EZAACA7wjcGCjVCClSb2ugy2utUtwVtT/Cj6QR0tYHrJHZ4dcsWAQLpOnHSMsvkQ68PLAbefN22+4pUGBdpoum2+WHtlqoedO1UsMrmUNDMiEdWG/NsiK7pIpar/GWJ1MVu3HL0F3Rq1dKL98xdMO47qhN9U5VgZ2AHTs3aeuGA4UjP24ZuRYMu6JSKG7ruDXYdPX0KeBH0vxsLCQtbMY7pZrV9voiOy1IK2DhM+DNaIh32DEIFlkQj3fYe9zVaiE5fVr3tEXSwVellt3SzHIp4NhtEl2S61W3C0st6Ce77fnbG6TiWVZBr1ph/y4k6cAr0pa7exvTSfb8wSL7rMZaev/NtNR7J21W2uct01Tr9H9z7Q1WKQ6E7DFjLbZ2PNfNx/z8dw4AAABJkuO6rk9lKv+1tLSosrJSkUhEFRUZqps4MhkrvStG3whp6wPSI/9oIaegzBpZBYIWbhNdtg570bl9u3/velpqfNW2hQqX9e6XXDzTgs3Cs62L8rrv2eOkQsPBjVZFj3dYgCossWB/6nXS0osyv7aZyyzstO7JXPE7+IqtFY7ut22gkl3qnVrtrfdNCXlrdqcvsanenYeUm6pyJl61d8DjD7UF13jl2AkJNykpaSdLTvt/0r4N0rb7LfyFK2yqeEeTbV8lx07euHG777QF9r6XzZHmnW6fi8bNVgFv3WcVaceRSmbZMoVkwgJ6MCRNWywVFNtnNNbqdQ2vsuc891bp6HPts/PUzfZ5cBPqOc5OUKqcZ5+jjkP2uYrHej9fofDw29WlPpcNdfYYgYBV0k+4Spq1yp9Dnut/5wAAAJPcSHIoFW4MLpeNkJJx6Yl/tk7Ncqxq53jdl4urLFy07LFgmwq6sYiFqrKjLBTNeZNNyw55a7hjLdYQ7dj39+2SvPcFC9ySVbWLZtg63MZN0qPXW8UxvZoeKrFp6a/9wSp788+w+3Yc9ppqtdmYO5oskLuSQiEvcKf0C7epbbSatkhdzSM/XiPSL+z3uXwiCdqMByfgdft27Dhu/q10xX22vvjAXy0MSl4DtKPtM9PRYLMf4l0WugsL7L1rfsPe9+52++yUz7E13wdftrCeTNiWY4XldqKmZKYkx9Z2d3f0fv6OuUBa9LbererchLT8vTalPB6zz2Rhhc3GKJ1ln8cDG6VNv/TWX8/Pbi/76hWSkvbZizXb80X32fZdTsCfAEzDMwAAAN8QuDG0XDVCeu6btoWX61ozKNfr/tzVamHICVgVuKXeKpSSVSKTXpOrzsMWmMpm9z5mekO0Wauk0BUWwB//Z6vSzVjqNS2ThaGCMpui/qdvSTMW27ZHh7ZLh7ZYeE/tp/3G41LRBlsfHWtNa0LmTTuWrPLpOF6mzVS5dq1qn4gd+bGb1Lyp96nA67pe0HPtuJdU2broPeukxefb1PJD26TiGXZ8g0W2NVjxDOmoU+0ER9s+69yeaLElAt3t3kmdRq/q/VbraP7a76zqPetEado8a7rWntawLNltY6icb+HaCdje6qmt6gKBvk3GJK8r/mb778ZX7aRM9arst6trqOudrTFjSXYhPRdoeAYAAOALAjf8l4xLr/7cqolOgdchOy2kppqPJWLS7udsSm/pLAvYgZAFjkCotwt4SqohWvSA9Oz9FnRa6i2QhSu8bbDSupenKqctO+0x65/xuoynKsHe1Oy2vVL7fu/i9OvS1usmvPXEQ3bqnmgV5rHk7QteWOxVVSvSgqdr70thmQXaQ03SX/7TPgOxFnu/Izuti7Ycq1pXLbd1zo5jMyOi++2ETszbP7uj0WYyzFzuNUDbbBXs7qh0cIPtrT1zqT12e6M9T3fUbn/6P/WG3Gy3zGvaOvK97FPV87HaUx4AAAC+I3DDf7uft8qhJLlDVXxdC1J1d0sLz7EAVDzTGqQN1vm5vFaq+7VN/a2Y5wVoWXhv3SMVV9uU3kDIgn3nYTsB0N4ouZm6hXsnApJpQTvVaK1nCnlq+vgga7JDZbaFFTwBOzFSWmMhtmKBvScnfFDa9nvpjUe8EFtsJ2USMbu+xFtq0N0ute6V5pxksxK62izMOo4tF6g9zarNkoXuo06Vdj1lW4B1t1m1umyOhWfJ1uHH222LrUS3FAzaZ6y9Uap9i1S50E7clM6STr/RKtQp2W6ZJ418L/vIrpGHdAAAAIxrBG6MzGD7Uw91XfSANy07i6ZhiZjUflDa+ltp0dsteIUrB3Z+bt1t04blWthOVQTDFXZbV1YBjbV4naODVpWOd9p9MoZtN8N/B3tfm1PQ28xrwO09oVLJobLdlyMVT7cAnSiTZq+yz8PiC6R5p0l3vWrhM9FljcsKy+22wWKpdYtVqOedYcFYsqA891Rpd9LWOTduspCa+my0N0i1p1vDtLq7LDiX19p965+xsF1SbWuvw2XS7BOsc/nh122GRc2JdsInU9OwbLfSmrl05HvZZ1s9H+me8gAAAMgbAjeyN9T+1NLg15VUW9fobDheJTrebk2xTrxGOuWT1uSqcbMFjlCRhZo5p0gb7+hbEayotanI0f2Sglb5DIXtMbvarJHZiHhrzZ2ABSolNeRU8XhUQ08zn4KcgFRYaWutS+fYSZA5J/duw1b7FmnrvbYEQEVSMmnvVWe93bf2zb1hu+cxHdui7fB22+4reqDvZ2PZxTb1unWXheNy2VTz9kY7gePKGp6VzbH7T1tkVeP2Bumkv7d13pmmbWe7lda0hSPf4zrb6vlI9pQHAABAXhG4kZ2GusH3p97/sjfLOtG36/eOJ6xR2nEfsCAtySrGicGfxwlal+lkl7fHcVBacqF99a+eH3w1c0WwsEyKOt79Xa9jeKJ3rfho9OlIPhwq3H24cVsqUH6UVbCLq+xkyZb7pbpf2fuz4G3WWb6jyWY4xAqk6YvtvZ11fObHLfS2Xjv+g17X+gyzLtLDcbCot9FarMEq51XLe8Nw+VEW9MOVQ6+Rrl7Rtyt+/6CfqoqPdI/rbKvn6SEdAAAA4xqBG8MbqpnTzBXSlrstYy5/rwWmA3+1SmKi27pGH95uVe5Ys6xCPEToTsalgLensWQNrVJrVvuvW02vCBaW2b7IDa/ael8nJKnTHq+z2RuzO/RzZ5QgPx8x12YstDdIc9fYNlwv/0Q6sMGq3dMX21Zfs0+wUBlrtdvOeZNVroet+FYOvqY5PRzvfdFb49+v0dqAx8uigpzNVlrZBvOUbKvnNEwDAACYMAjcGN5QzZy6WrxKsqTIDqtox9stBIULpK4iq25KXoWxU0MH3oBVRJ2gpKAU7x58zWqqIrjtd1LzTgtpPVt4yYKJE7TnLSqXWg8oq3XkyJ1AgX13gjZLYPdzFrArayU5tu91dL8F77lv7q3edkYsbIeK7URK1QrrWJ76/I2k4psKx807pD9/Wzr0moX5QFpwHU0FOZuttEa6x/VIQzoAAADGNQL3ZDJUQ7MjMVQzp64OC0uJbqn+OWtyVjpLPeuYC8uswtzRZGHJKVTPOugBU7wDXsOx1Hpp2f7Kg1UcnYDt0d2wyfbzToXrhNep3E1aE7NQgY2noMTWEWPsJBPe+15gn5HYYdvfOlBg73/BNGuS1t5gW3WVVNntuzusAl5cJbXsspkSFbXSrOMshEd22cmVghL73NWu6e0mn4kTkKYfLZ38cVsa0VR35BXkbP+9jXSP65GGdAAAAIxbBO7JYqiGZkdaFRusmdPeddKuZ63KLdmU80ChBaHyuXZZImYV74Iyq26HC21ab2r7rnROwPtyLHA7AWnGMYNXHJNxafM91oE8GLb79GmK5tq2UG6J3TYYkrqZHz62knaSJRm39yZUYidfEl0WkBPdtg67sMLb/zpil+1+zqt6nyrNXCY1bLRO4m37LZS3H7LP0/6X7CTP9GOsMrz0oqGHk6sKsp//3qSRh3QAAACMSwTuyWCohmaRegsYRxICMjVz2rtO2vG4FO+SVaYdq/glY7ZmW5LKjrJ9lCWpYq79d0GJFD1ogSuRvsVWoDdwSxaiiqZJ888YvLK3+3np8Gu2DjfaYLdLhf8eSQv8cVd0D88Fx9bHp95vN+l1lu/WoIvdk6klAvL22e62EzMlVVLbPilYbXtld3kzKZq2Sp2HpBnLrArtOFLZbJspsfNJ274rFJZKZ1uAj7fbmudHr7fnyCZ0H0kF2e9/bwAAAJg0mKM40fVvaBausIpvuMJ+7miUttzr7R89SqlmTkUzpb0vSI1bpV3PWNgOFFhYUqopmSQlLXS31tt1BWV2fSBo4wiXSZULLFCHZ9hjBEJ2fSBk679nHGNVx5oTBh9X9ICFt4JSb5/tTq8yHvQCntM7HjtYoz8GU05wkMtdOxkSLLT3KlgohQrTutBnkvQCecCbcZC0xmlVy+0ETEeDtyQgYCdlDr8uFc+UqtM6iDuOfS46D9vsiLK5VhUPhOz7tKOtOr7uu946/mGkKsizj7PvI5lG7ve/NwAAAEwaVLgnuqEamjmOVQgb63o7fR+JgiKrSO5dZwFJAQsbkrdPdUC94TYpdRyW5h0nRd6wimVqP+uytOnmsYgFqYJSC+DVqyxste3t3as5pf+a2ZJqC39uQpJjQcz1njtjuCZwZ6f/TIC0kympkyOhYqmguLfZWFYBM2Gfm/YGmz4+fbE1Smuos5AdrrC12+EKqfatfTuIS14H84i3fKDf8zkBu/3hbTbzYf7po3ztwxjLf28AAACY8AjcE91QDc0kawrVumfwTt9DSQXc/X+VNv3SAvKCs63KvdtrkJaMW9AIFXnThbu8AOxNNe5osJ/jMa+CXWiPEwzblOJYs92/eLo9VqjI9vAuqbapwfXPeVtDdUjNb0iHtvWumZ1xjFRWY2EtHvNCmDctfUBDNsJ29vofK+/nYLGdAJm5RCqutv2y9zxvoTsYtvd+0C7waaG987C09bfSzOXWfbx4hlQ2R1p5mXUt/8sPLMz3193mfUaKMzdIKyi1IB89kOXLHEWTQT//vQEAAGDSIXBPdIM1NEsZyd7C6XqaQtVJ+zf07pdcNtv2MA6ELD+5CUlB+++At7Y37k3tDoZsy6fZJ0oHN1oQ6YxYqAmEbB1u2VHWpbo7amt02w9adbNomvTw/7U12l3ttk43VGz7OM8+3m5/cKNUUCkl4jad3CmQdT/vPrJjOpWFymwdfrLfMQwU2kyEZLfUus9OcMQ7e99LN+mt606f5ZAuVSEPS3Ls/k1b7D1f8k7ppI/aumc3Ke16Str3kjXeS3ZZmA9XWsd51+397PTXHfW65M8e/nWOtumZX//eAAAAMCkRuCe6TA3NUkazt7DUtylUYbm3TrpEaqm34H3UKbYuu6vF274rNYXbsS83afdbfKEFZidoFcyORqtUJxPqWQscnmbjS3TaVOO3Xm9Vykf+0Z6rpMoCdXe71NUm1T9tjbKqllpYb33Jxhby1gInvenldgByc4ynivB06ZgLpda90t4/966HD3oBN+ntiZ6qNBdNkworbZp5x6He2Q5u+np+qbe6HZCKvNt3t1tgrThKKq22JmaSBfhZx0ub77OZFMGwPXe4wt7johkWwl2332c9aZ+fqlU26+HAxsGr1kfS9MyPf28AAACYtAjcE12qoVmk3jo1D7W3cDZTaNObQhVXS/v/4nWS9hqjxSIWwGrXSG88KrldvZXuZNzCUKhQmn+aPUdXi42naqVVNJ2Y12iqwCqp0X225jZcJtWstpD9x89a6AsWSs07vep1UFLAxv76g1LzdineYVtMdTRJFYtsOnLrbqmjRVIWjbPQV+UC6dBW6xKe2sotVCTJ8bb1kpTosL3VQ0UWNguKpMIS+9x0NnuV7qB9DvoIeidGiuzHgLf+v3yeVZlTa54b6qRtv7MwHwzZ5yEek2K7LUiv/pBU9xt7/0uqe8Nye4M9dtls6akv/P/t3Xl4lOW5P/DvO/tMksm+QgIKBDAgAiFsWlvJVVDrRitKORTQ1oNVgapoPRatx1+Fg9Va0WrVVjxXqbhUwXpQQBZZVNawBgKyL1kI2fdZnt8f9yyZkIQEMlnI93NduULmfTPzTp4x5jv389xP01Xrhk3PvIHZ2/SsMFuansX0b3pP7Zb+90ZERERE3R4D95WgJXsLt3QKrbcplMEmzdFqS/1dqb2Nyc4fBvrdAlw9Dji6VoKzs0YClMkOJI8CEkdIhRKQKvWx1Z6mZm5pnGWwSOXS5QCKD0kls64S2L9UKtya3rMm2LMW2zt13bv1V16WXJOrTqaQFx+Eb/02w/alKf7es96+Rr52VMqHpgP0FgnJmk7GqeSYhGKjTdbk23vK2FYXNVg/75n1oDd6quQuz6wIyPhZwmWbuNrywDDcc5ScU1sqgVtv8ryurcBN84Ftr8n1VhXKfYf3kmq7s7r5qnVbND1rq728iYiIiOiKx8B9pWhub+HWTKGtLZfQUlUoVc7QJKlu1lVIuDKFSqOz84eAq8d7AvMxOWbvCcQNkYp0YbacawwB8nZ6pqeHymM4KiWkOWskZOkt8rnkqFQ04W6i67XLH+aUA3A2XKvd1PdRizirZeaBbzq4AuBZn+2s8je90xlkvBXkdWKye4K2kmZnLoeMr0x98NyV2xPgq+Q2vQUIS/Ksx/aseW4sDFsi/Nen6SQMD5oM/HyFzIyozJdK94n1sqb/YlXrtmp6drl7eRMRERFRt8DAfaVoarp4a6fQmsOkClmRJ2FH06RC7ayVsKR5QldVIZC7HYjsC2TMBgr2SFgqOeKv9iUMB9Y+KSFaq1cl15sklNUUyXpfvRlwVsptTXa5pqBTLsDVcO21d32+Zw22yynnhSYC8UOAo6tk+rjb4ZnlYAD0mgRXpQF1JfJ6cjs9ywic8po0ALDGSbj1rnku2B8Yht1umaZdVyFv1oQkyPHacnkc79ZfJceBou9bVrVuy6Zn3r28iYiIiIiawMB9JWhuurjRepEptD1k6veRVfI99p5y7tltsh4VkABk7wFUngNqiz1bezmAqH7A8JlS7et3y4WBv+S453H0Uh1VLtkqDJo8ttsNwO1pvsbO4p1D/Tc86lWoAU9TNJ28eeLtWJ98vbzx4qyVNfR6o1Sc466VGRRFhyTEuh0y80FvAsxRcl7hPqDnWP+a5/phuNyz37t3irqml4Ac2efCMNyaqnVcGpueEREREVG7YeDu6i42XbzPhKbDSOU5qXAXHwW++5MEqJgBEpaOfCHTda1REpI0T9Mrix2w95aGViNnA5FXy301Vu2rq/Rs0aTJvx1VUql0u/1Ti5ULvnXa1Ml5OstbY6TJHQCEJ0s4ttTIGy9Gq2zhVVsqU9SjUmWMy85IUNY0z8wLz/ZeA3/mX87g7QB+6P8kqLtq5XWrM8obPJUFcp/5ewJfa62pWrPpGRERERG1Iwburqwl08VPbZZmVQ3DSOU54MwWCUbGECA6VcJUXhZgiZb9rnN3ynFXnYTu0CSZel51TqqAF5tOaw4DQuIAW5wErJKjMhVdZ5Lu1rVlQfvRUEMNt+oCAD1a9WaHzgCEpQBGsywDACSomkPlwxTif425aqUi7m1sFxIL9PqhZ5/2WpnxUJkvb/L4LlEHpN4GbP+LTCO3RMpr0u0ClFO2kNPcwLbXZUaFzvPrq7VbdbHpGRERERG1EwburqwlHZcrcmU7pdLj/jCiFHD+oIRwnREIS5RKtqb5g7rBJh2hK85KsNEZpLpYdESq2o1VAeuvIzdagbLTMiX43H5PMy5N1gC7HEBdFbheuz21xZ7knteYLUaq2N4wm5QuY5+/2/8a05vlNeOqkyUDoYn+ngAAUFMqr6+G08NrSuVxLBFSGXc45HVmCpXHdTuB4sPSMM27hvtSqtZsekZERERE7YCBuytr6drV5OulYugNI26H7HPtdskU8ej+nkp2rQQlvQU4uQGwRElQctXKR/kZCe/9br2wCuhdR37ugDSoKjkmj+l2wh+sPdtKKRfaJgDS5WnlVH53HeCskLX7tWX1wuxdcrzsjP81ZgyRkFx6ArDFA9ED/GG7ubXSlfnyObKPp8GaU9b9G8zw7QdeVeg/z+tSqtZsekZEREREQcbA3ZW1dO1qwhCZMu4NIxX5soba2/jqfI6EGLdTPrxrZaFJaDKFAeFpsh67/IxUMmOv8UwnDpPP216TKeOlJ2Wf7kbDHLft6rr0kPFTQNV5mcHQMMw2DLxWT0XaHCFTy93Oi6+VDomXaeTOKtlurCFHpRwPib/wGKvWRERERNTJMHB3Za1Zu6rp/GGk8CCw8y0J0oX7Pc3MwqWCWXICqCuXNbbGEPmoLQGK66QLtdEG7PsncHythHlLlFQbHZWAwzPlnE3QOhfNBOg0md4NBUCTsdOZgLrSlt2HySafI/sCQ++X113DMNtY4HVUAjnLW1517jlKHqMwGzCGBt6/ckv/gJg0Oa/R58qqNRERERF1HgzcXVmTa1crgPOHJFAnjQg8P6K3BKXc7cD+pdIx3BYry3OLT8vUcWjSldxRIWu7rbESdI6tlUp4XTlQVQRYwgFTLlCW69mHuZbbe3VGGjxbsHmm8ZvCZFq4q07W1190Lb1nKndIgjQ/C+vRdKhtLPDGDGx51VlnkEr5midlxoQt1t95v+qcrB3PeMTfMI2IiIiIqBPjX61dXcO1q4UH/OtbQ9zAnv+V/Yz73+WvKGo6IGkUsPt/ASipYFedl0CjPNO+FWSdrqtW1lxXnZdu6N5wVn1Ovk/TAc46z+2cLt4p6fTSrA6Q9fnhvWSpQE2pBFd33cXvwxgCxA2WGQ4NG51dTGurzqk/kc9bXwWKv5c3efRGqWxnPOI/TkRERETUyTFwXwm8U3mPrgWy3pKAE91fQlX9PbkzZvlDd2i8dBuvLgKKj0jzNSiZ8uuqA1zVEsQqcqVyXV2EgECtXICLU8e7BM0A6JS8iWKNlu22AHmd6Ayy/KC5mQmWKKB3JgCnVKsbNjoLhtSfAH0nSDfyynxZs91zFCvbRERERNSl8K/Xrs67FVdNKXB0pXydNKLxPblzlkkwV27ZFsxZLeu3LZESvkpPyDRy3327gLKTHfK0qI3oTDLdX7lkOrbB7D+mN8obLIDnzRO9/NsXvnWyPVe/26Q7eVONzoJ27Qb/1l9ERERERF0QA3dX5t2Kq/CgTPk+f0C28QqJl7W2Xt49uQsPAFnvAtkfAEWHZaqus1q2AtO0lk0tpk7GAMBZ72tv4zwFwFPB1ltkDXbCdUBNsSwHMNllb3SjTV4DOpO8dqA8ywggle+QGLn/5hqdERERERFRoxi4OztvBbthw6lzB2SNa3UhYE8GDFYJ0dVFwJktQI+RgaHbFAKc3Qac2iyBKiROgljx97IFE3U9pjDAFiNvppzZIqFaZ5Q3UKzhQMTV0uDMHA6c2gBAA5Iy6m0DVy6vG2+3+V4/8KzpdsqMCYMFuGaSbCt3se213E5O/yYiIiIiaoB/EXdm9SvYzhoJQDEDgP53yFZL1YX+7cCUW/ZGNliBujKZMm6L8U8try2XtdpQQFSqTCWvLgSUs9lLoM5KJ93jDRYJw5UFsi1b/CAJvGE9AZ0nINeUAhF9ZE1/1TkgdrCMe00pUH0eMA0FwhLlzZq6CrnPpPSWV7QPfe5vcOZyyFT1yL7SM4ANzoiIiIioG2Pg7qwaVrC9WyPlZQHnsiVAR/Wpt1Y7XAJ2RS5gDJMKZm2prMF1uYCTG6TreFiShKzS44CjpiOfYTdRb29077ZcbXK3esBokSqyJQrQGwBdGJAw3B+0Af9+7D1HAam3A4eWB76Bk3KDBOuG+2dfrKLtdehz2cKrtlRmTRhsMmOiMFtuBxi6iYiIiKjbYuDujJRbKtv1K9iAvwHa6W8lWMcN9n+Ppkn1u7ZUKtwuJ1CeC5z4Gij63rNHthMoOVGvqt2GAZAap+kh+5p718jrpGu4cuKytlHT6QG3S95QqTgLxAySbH/+QL392CslbHubncUOlI+mgnVrtu4CZBr51lflNRdxtf9+THbAGCr7aG9dJN3GOb2ciIiIiLoh/hXcGZWelCqkPdkftr00TW4v/h6ozJV/e9liZe32qW+AssPAwU8unDKunGDQbkcGm1Sf9RaZru2oAFQdoBkBpQG4xK3VDGbpPm6NARKHS6AG/EsQys9IBbths7PW7ondnNPfyeswJO7Carimk9dj8WE5j93GiYiIiKgbYuDujGrLZcqvMaTx46EJcqz0lFQzAakyumqB2gqpbDvrZCsoAIAOnrbTYNhuZ8oBQC/dwE1WoELJ0gDlhoyFVu+zhotXvTXAHAFcd59MB2/Y0OxSp4Zfisp8WbNtsDV+3BgiSxsq84Pz+EREREREnRwDd2dkDpPqpKNSppE35KiSKbymUODMd0BduWwLVlsu2z656hAYri9j6jJdAm+IhqeJmFnGReepLrtqgfBe0lzM6QBObZTboDVzn5BgGxIP3PA0cN2MxoN0W1awLyYk3vMcqmQaeUOOSjkeEt8+10NERERE1MkwcHdG4SmyHjsvK3ANNxDYBCs2DVj3O6DkuAQ2twOsYHcGOgAuWb8d2Rcwh8oYuZ1A2Skguj/Qc7Snu7wCqgpkj3QomWauXLhgHI0hQM8xnavzd89R8vwKs2XNdv03AJRbOqLHpMl5RERERETdEAN3Z6TpgP53yZTxwmyZNm60SvOzslNSMex3C7DrXamcAlJJdLsBcJuvjqHJHthKSdjUDIA1WsbFUe0J0fUq375v04Aeo2TqtXIC0Em4Vi6pELtdQHQ/IP0hYNC9nav5mM4gbwCseVIapNli/d30q85J5/yMRzrXNRMRERERtSP+JdxZxQ6UMJPzKXD0K+Dcfgkyml7W6H72S2mMVVcBQPM04GLYDo5GgvIFp3jWyeuNUskOiZeu5KUnJIC7HYA5EgiNA5zV/i3bAHkzJXE4YIuWWQ3VRXJ7WBLQ64fAsAdath92R/BW2737cFcVys8gJk3CdmepxhMRERERdQAG7s4sdiBQdFgq2YCs+9WZgIozQH5WvaZoLQiEdBka+9nq4V8br0k1N3agVLbPbpOqbliShG1njbw54qqR464a2aYNCFwiMGauvJly/pAci06V9djBanrWVlJ/Ilt/nf5OGqSFxMvzYWWbiIiIiLo5/kXcmbmdwLbXpCIa1R+ozJO1wM5aBG4nxbDdtjTIOmxvJ/EGt+uNnjCpSeVauWUNs87sn+JvCZfGd4B0KDeYpQJcdlymXuv0QE1p4D7ZOgMQebV8dDU6A7f+IiIiIiJqgIG7M/Puc2wKA4qPeLZXusR9m0noTA2ay3mDNfxfm+0SiK2x0mG8KEc6hDur4ev+7nZKyNR0ss7aYAIqzkqItsXImyIm5W94ZwwBQpOB8pOyLKAyHzBYL9wnm4iIiIiIrhgM3J2Bcje+d3JlPlBXBbjLZM0vw3Yb0AC9SUJxdbFntoAnFOtNgD1FAnlYD9nj2lENlJ2Q4KzBMyXcIQ3OXHX+u60p8VS6bdIEreQIUH1OtsvSm+Rc5QAsUUDGbOlSHux9somIiIiIqEMxcHe0cwekMVrhQVnra7DIlmD975Kpx85q2XdbsSHaZdOZpJO4OQy48x+yxvrQZxKWYwcBicOAgr1A1t+BhKGA3iCd361R8uaHAgC3jIWmhzSrc0pgdlRLlTssGbD3AEJiZEyrCmWfdJ1B7scaA/T5cfvtlU1ERERERB2GgTvYmqpeAxK2t74KVBcC9mT/lkp5WbIlWOpt8v3K3fxjEAC9BF5ndSPHPFt26S3SOTyit6w31hmA0Y83uBsTkLMccFYBejug0wFJGcCxr4DaMsDlBKDk/uCWKeehPeR7DWbAHCLjHZsGJF8vMxNctRL2y89IN/LwlOD+KIiIiIiIqFNg4A6m5qrXMf3lWHUhEHONf62v2S5fF2YD2R9JSHTVePbYpkCaTPEG5OcX1gMoOyPrq30zAnSyHlvTyZRuvRm47v6mO2iHp8gY5WX5xyWmvxw7sV4a10HzTB+3SkdunV7WeMdeI2u49Wb//ummUKBOk+ZotlhZr80p5ERERERE3QIDd7BcrHo98KcSxO3J/rDtpWkS1gr2QNZta409QjelecIzpMpssspnnQH40f8DTn0DHPkCqKkAaov9W6fpjBKQ+0wAhs5o5u518oZI6Sl/aDba5HvtvQBnHWCNhOy5bfKvB48eILc7DwHXTAIK98v4lp+RN1rYHI2IiIiIqNth4A4G5b549frQv2XdrzGk8fswhcg0ZGeN3J/OCrgbmy7d3ah6DcY1qSYrt6zBHvhTIO5amcJdehKwRMrPz1UD1FUC0f2BkXMuXmGOHQhkzJIxPL0FKDkqb5bojIDJBoTEAVF9ZewMZtmDW9Okum2wSLO1/rc1vZSAiIiIiIi6BQbuYCg9efHqdekJ+dpRKUG8obpKAC5Pcy69p0O2UaZFd3tuT8U6RMK2LQbIeESq3LEDpQu4dyq/Tg+YomU9dWsqzLED5XHOZQOhiUB4MmBLAE6ul7Fz1gI9RwGWCDlfKZk2njDMH67ZGI2IiIiIqFtj4A6G2nKprDZbvdZLkCs7FVgFB/zhzRor05k1PeCs7MKdynWyPZZOJ1tqOaoQuMWZBn/Zuv7NevmsFAC3rNdWnkZlxhBZHx2VKmE79Sf+74sdKOuuL6fCrNzSPM1VK1t4eccn4ToJ25V5QP4uoNcP5fmUn5YO5FyjTUREREREHgzcwWAOk6nFzVWvDVag3+3AwX/Va7AVIse84S15LHByg2e/Zx2aDKadkvda9fK8bNGA0SLhuaYUqMiFr9u38my11fD5GSwS1F0OwFUNxA8FrNHA4MlSzQ6JlypzYw3QLrfC3NQsBVss0HMkkLdLnkP+LrkmrtEmIiIiIqIGGLiDobFO1171px5ffZPs2eyd/tywwVZUH+Dr3wOOfE+VtyvQSQA2WGSNuubp6G2LBqABdWWeaneBVLDNdrm9utCz/ZkRUv12+5uhOSoAW5ysnU5KB665O/hV5OZmKdhipbKdtwu47j7/Vl+sbBMRERERUT0M3MHQWKfrhtVr79Tj5qY/lxwH7J713r4KcCen6eQ5hPWU6fKuOnm+MdcAeTsBU7gEWe9z8YZqczhQUwLAs881ANRVyHRtg1Wm34fEtd+U7YvNUnBUyZsIicO5VpuIiIiIiBrFwB0s9TtdX2x7qKamP9eWS4VYb5Kib1dZw633dO42FALOaiAsUbp5u52A3ugP2crpD896k1S8lQsSuL1vLmhSZe6RAQx7oP2mbLd0lkJ4SvtcDxERERERdTkM3MF0uc27zGEyzVrTAEsUUH0e/jXO7mBd9WXSAdYo2YpLOQBTmDQ3c9XJ864rl0ZkoUlAzXmgtgQw2KSSDAXoLRLK4wZJUDdHSri1xcjPsr20ZpYCERERERFRIxi4g+1ymneFpwBR/YGz2yW8agCUDm0ftjXIS6HedO4WfY+XpyKtM8ibBM4aoLYMCO8NDJkO1BQD5w7IqdVFQGQfIGag/PvsVqDqnEzR1hmA0Higx8jAcG0KAc7nyBsX7Tl9uzWzFIiIiIiIiBpg4O7MNB0w8hHgyAqg8pyncZpni6w2pQf0Brlb37R1b/Cu3zncAJhDZW21csv1aZqcY7EDxnBpAmexA9EDgSHTgLg0Obf0JJC3GzjwkQRyvUmawoXEAac3A6WnJWjHD5Htw+ozhUjYrS1v4+fdAm2xxRgREREREXVLDNydXdxg4PqngXXzpFJ8QdjWGqx99tLJ1Gy3W85RDlxQvdYMcp43OxosMhXc7Qndml7WYyslQTuyLxB3rQTuwmyZ4q5cgGYEBv4U6DNBKtQNQ6m3yh/RG4hOvbBi3PsmoDBHAnjDsA14tlGzyP12hMvdYoyIiIiIiLqlThG4X3/9dbz44ovIy8vDkCFDsGjRImRkZHT0ZXUe6Q/KmudVs4Gys57w7KE3SRhVbgnGzloASpqUGUMAt0Nu1xlk/bTbKbe7nBKuDUb5Wm+SyrPbAcAJGEJkj2tLJHBuv6y7TrhOKtKAhOOaEqDwgNx+0wuN74fdUGMVY3tP4JuFbFBGRERERERXlA6fF/vBBx/g0UcfxbPPPoudO3diyJAhGD9+PAoKCjr60jqXAXcA9/4b6HuzNPAyhkoncHO4dP02hgLR/aVBmcEslegBE4GoVKnQOmukYm0KA6zRgNEK6PRyzBYj661D4wGjTUJ2jxHS/MxoBfqMBxJHyFrrmlIJ7bVlQMVZWY89ZEbLwraXt2IcP1g+6wzSoMwaI5Vz72PUlMrXbFBGRERERERdkKaUammXrKAYOXIkRowYgddeew0A4Ha7kZycjEceeQS//e1vm/3esrIyhIeHo7S0FHZ7I3slX4nOHQB2/hXIWQZUFQLQyZppS6SEameNTAOP6iPVYqNNpm/n75YqeFRfCeX2ZMAWC5z4Gig5ArgcMgU9sh8w4iEg/trANcuFOf6p4M4aqarHDGzb5mHnDgT/MYiIiIiIiC5Da3Johwbuuro62Gw2fPzxx7jzzjt9t0+bNg0lJSVYvnx5wPm1tbWora31fV1WVobk5OTuFbgBCc7H1gK73wPydsqaakAq0r1+CFw1DijY0yC4DgCSMoCQBmus3U7g9HdAZb4c6zmq6Wq1t/lZMJuHtcdjEBERERERXaLWBO4OXcNdWFgIl8uF+Pj4gNvj4+Nx8ODBC86fP38+nnvuufa6vM5L0wFXZwJX3QSUHAfOH5Lbo1NliramA/rd0rLgqjMAKde3/HGD3TyMDcqIiIiIiOgK0SmaprXUU089hUcffdT3tbfC3W1pOiDyavlo7BiDKxERERERUYfp0MAdExMDvV6P/Pz8gNvz8/ORkJBwwflmsxlms7m9Lo+IiIiIiIjoknXo4liTyYThw4djzZo1vtvcbjfWrFmD0aNHd+CVEREREREREV2eDp9S/uijj2LatGlIT09HRkYGXnnlFVRWVmLGjBkdfWlEREREREREl6zDA/c999yDc+fO4ZlnnkFeXh6uu+46fPnllxc0UiMiIiIiIiLqSjp8H+7L0S334SYiIiIiIqIO05ocyg2OiYiIiIiIiIKAgZuIiIiIiIgoCBi4iYiIiIiIiIKAgZuIiIiIiIgoCBi4iYiIiIiIiIKAgZuIiIiIiIgoCBi4iYiIiIiIiIKAgZuIiIiIiIgoCBi4iYiIiIiIiIKAgZuIiIiIiIgoCBi4iYiIiIiIiIKAgZuIiIiIiIgoCBi4iYiIiIiIiIKAgZuIiIiIiIgoCBi4iYiIiIiIiILA0NEXcDmUUgCAsrKyDr4SIiIiIiIi6g68+dObR5vTpQN3eXk5ACA5ObmDr4SIiIiIiIi6k/LycoSHhzd7jqZaEss7KbfbjbNnzyIsLAyaprXZ/ZaVlSE5ORmnTp2C3W5vs/ulzodj3X1wrLsPjnX3wHHuPjjW3QfHuvvo6mOtlEJ5eTmSkpKg0zW/SrtLV7h1Oh169uwZtPu32+1d8gVArcex7j441t0Hx7p74Dh3Hxzr7oNj3X105bG+WGXbi03TiIiIiIiIiIKAgZuIiIiIiIgoCBi4G2E2m/Hss8/CbDZ39KVQkHGsuw+OdffBse4eOM7dB8e6++BYdx/daay7dNM0IiIiIiIios6KFW4iIiIiIiKiIGDgJiIiIiIiIgoCBm4iIiIiIiKiIGDgJiIiIiIiIgoCBu4GXn/9dfTu3RsWiwUjR47E1q1bO/qSqBnz58/HiBEjEBYWhri4ONx5553IyckJOKempgYPPfQQoqOjERoaip/+9KfIz88POOfkyZO49dZbYbPZEBcXh7lz58LpdAacs379egwbNgxmsxl9+/bF4sWLg/30qBkLFiyApmmYM2eO7zaO9ZXjzJkz+I//+A9ER0fDarVi8ODB2L59u++4UgrPPPMMEhMTYbVakZmZicOHDwfcR1FREaZMmQK73Y6IiAjcf//9qKioCDhnz549uOGGG2CxWJCcnIyFCxe2y/Mj4XK5MG/ePFx11VWwWq3o06cPnn/+edTv58qx7po2bNiA2267DUlJSdA0DcuWLQs43p7j+tFHH2HAgAGwWCwYPHgwVqxY0ebPtztrbqwdDgeefPJJDB48GCEhIUhKSsIvfvELnD17NuA+ONZdw8X+u65v5syZ0DQNr7zySsDt3XKsFfksXbpUmUwm9fe//13t379f/epXv1IREREqPz+/oy+NmjB+/Hj17rvvqn379qldu3apW265RaWkpKiKigrfOTNnzlTJyclqzZo1avv27WrUqFFqzJgxvuNOp1MNGjRIZWZmqqysLLVixQoVExOjnnrqKd85R48eVTabTT366KMqOztbLVq0SOn1evXll1+26/MlsXXrVtW7d2917bXXqtmzZ/tu51hfGYqKilSvXr3U9OnT1ZYtW9TRo0fVypUr1ffff+87Z8GCBSo8PFwtW7ZM7d69W91+++3qqquuUtXV1b5zJkyYoIYMGaK+++47tXHjRtW3b181efJk3/HS0lIVHx+vpkyZovbt26fef/99ZbVa1V//+td2fb7d2R/+8AcVHR2tPv/8c3Xs2DH10UcfqdDQUPXnP//Zdw7HumtasWKFevrpp9Unn3yiAKhPP/004Hh7jevmzZuVXq9XCxcuVNnZ2ep3v/udMhqNau/evUH/GXQXzY11SUmJyszMVB988IE6ePCg+vbbb1VGRoYaPnx4wH1wrLuGi/137fXJJ5+oIUOGqKSkJPWnP/0p4Fh3HGsG7noyMjLUQw895Pva5XKppKQkNX/+/A68KmqNgoICBUB9/fXXSin5RW80GtVHH33kO+fAgQMKgPr222+VUvLLQ6fTqby8PN85b7zxhrLb7aq2tlYppdQTTzyh0tLSAh7rnnvuUePHjw/2U6IGysvLVb9+/dTq1avVjTfe6AvcHOsrx5NPPqmuv/76Jo+73W6VkJCgXnzxRd9tJSUlymw2q/fff18ppVR2drYCoLZt2+Y754svvlCapqkzZ84opZT6y1/+oiIjI31j733s/v37t/VToibceuut6r777gu4beLEiWrKlClKKY71laLhH+btOa6TJk1St956a8D1jBw5Uv3nf/5nmz5HEs2FMK+tW7cqAOrEiRNKKY51V9XUWJ8+fVr16NFD7du3T/Xq1SsgcHfXseaUco+6ujrs2LEDmZmZvtt0Oh0yMzPx7bffduCVUWuUlpYCAKKiogAAO3bsgMPhCBjXAQMGICUlxTeu3377LQYPHoz4+HjfOePHj0dZWRn279/vO6f+fXjP4Wuj/T300EO49dZbLxgPjvWV47PPPkN6ejruvvtuxMXFYejQoXj77bd9x48dO4a8vLyAcQoPD8fIkSMDxjoiIgLp6em+czIzM6HT6bBlyxbfOT/4wQ9gMpl854wfPx45OTkoLi4O9tMkAGPGjMGaNWtw6NAhAMDu3buxadMm3HzzzQA41leq9hxX/k7vfEpLS6FpGiIiIgBwrK8kbrcbU6dOxdy5c5GWlnbB8e461gzcHoWFhXC5XAF/iANAfHw88vLyOuiqqDXcbjfmzJmDsWPHYtCgQQCAvLw8mEwm3y91r/rjmpeX1+i4e481d05ZWRmqq6uD8XSoEUuXLsXOnTsxf/78C45xrK8cR48exRtvvIF+/fph5cqVePDBBzFr1iy89957APxj1dzv67y8PMTFxQUcNxgMiIqKatXrgYLrt7/9Le69914MGDAARqMRQ4cOxZw5czBlyhQAHOsrVXuOa1PncNw7Rk1NDZ588klMnjwZdrsdAMf6SvI///M/MBgMmDVrVqPHu+tYGzr6AojaykMPPYR9+/Zh06ZNHX0pFASnTp3C7NmzsXr1algslo6+HAoit9uN9PR0vPDCCwCAoUOHYt++fXjzzTcxbdq0Dr46aksffvghlixZgn/+859IS0vDrl27MGfOHCQlJXGsia4wDocDkyZNglIKb7zxRkdfDrWxHTt24M9//jN27twJTdM6+nI6FVa4PWJiYqDX6y/oaJyfn4+EhIQOuipqqYcffhiff/451q1bh549e/puT0hIQF1dHUpKSgLOrz+uCQkJjY6791hz59jtdlit1rZ+OtSIHTt2oKCgAMOGDYPBYIDBYMDXX3+NV199FQaDAfHx8RzrK0RiYiKuueaagNsGDhyIkydPAvCPVXO/rxMSElBQUBBw3Ol0oqioqFWvBwquuXPn+qrcgwcPxtSpU/Gb3/zGN4uFY31las9xbeocjnv78obtEydOYPXq1b7qNsCxvlJs3LgRBQUFSElJ8f2dduLECTz22GPo3bs3gO471gzcHiaTCcOHD8eaNWt8t7ndbqxZswajR4/uwCuj5iil8PDDD+PTTz/F2rVrcdVVVwUcHz58OIxGY8C45uTk4OTJk75xHT16NPbu3RvwC8D7PwPvH/2jR48OuA/vOXxttJ9x48Zh79692LVrl+8jPT0dU6ZM8f2bY31lGDt27AXb+x06dAi9evUCAFx11VVISEgIGKeysjJs2bIlYKxLSkqwY8cO3zlr166F2+3GyJEjfeds2LABDofDd87q1avRv39/REZGBu35kV9VVRV0usA/RfR6PdxuNwCO9ZWqPceVv9M7njdsHz58GF999RWio6MDjnOsrwxTp07Fnj17Av5OS0pKwty5c7Fy5UoA3XisO7prW2eydOlSZTab1eLFi1V2drZ64IEHVEREREBHY+pcHnzwQRUeHq7Wr1+vcnNzfR9VVVW+c2bOnKlSUlLU2rVr1fbt29Xo0aPV6NGjfce9W0X9+Mc/Vrt27VJffvmlio2NbXSrqLlz56oDBw6o119/nVtFdQL1u5QrxbG+UmzdulUZDAb1hz/8QR0+fFgtWbJE2Ww29Y9//MN3zoIFC1RERIRavny52rNnj7rjjjsa3VJo6NChasuWLWrTpk2qX79+AVuPlJSUqPj4eDV16lS1b98+tXTpUmWz2bhVVDuaNm2a6tGjh29bsE8++UTFxMSoJ554wncOx7prKi8vV1lZWSorK0sBUC+//LLKysrydaZur3HdvHmzMhgM6o9//KM6cOCAevbZZzv19kFdUXNjXVdXp26//XbVs2dPtWvXroC/1ep3oeZYdw0X+++6oYZdypXqnmPNwN3AokWLVEpKijKZTCojI0N99913HX1J1AwAjX68++67vnOqq6vVr3/9axUZGalsNpu66667VG5ubsD9HD9+XN18883KarWqmJgY9dhjjymHwxFwzrp169R1112nTCaTuvrqqwMegzpGw8DNsb5y/Pvf/1aDBg1SZrNZDRgwQL311lsBx91ut5o3b56Kj49XZrNZjRs3TuXk5AScc/78eTV58mQVGhqq7Ha7mjFjhiovLw84Z/fu3er6669XZrNZ9ejRQy1YsCDoz438ysrK1OzZs1VKSoqyWCzq6quvVk8//XTAH+Ic665p3bp1jf7/edq0aUqp9h3XDz/8UKWmpiqTyaTS0tLU//3f/wXteXdHzY31sWPHmvxbbd26db774Fh3DRf777qhxgJ3dxxrTSml2qOSTkRERERERNSdcA03ERERERERURAwcBMREREREREFAQM3ERERERERURAwcBMREREREREFAQM3ERERERERURAwcBMREREREREFAQM3ERERERERURAwcBMREREREREFAQM3ERFRN7F48WJEREQE/XHmzZuHBx54IKiPsWzZMvTt2xd6vR5z5sxp9JzCwkLExcXh9OnTQb0WIiKipmhKKdXRF0FERNQZTJ8+HSUlJVi2bFnA7evXr8ePfvQjFBcXt0tgvVRff/01nnvuOezatQs1NTXo0aMHxowZg7fffhsmkwnV1dUoLy9HXFxc0K4hLy8Pqamp2Lt3L3r16hW0x4mPj8eMGTMwa9YshIWF4ZFHHml07B5//HEUFxfjb3/7W9CuhYiIqCmscBMREV0BsrOzMWHCBKSnp2PDhg3Yu3cvFi1aBJPJBJfLBQCwWq1BDdsA8M4772DMmDFBDdsVFRUoKCjA+PHjkZSUhLCwsCbPnTFjBpYsWYKioqKgXQ8REVFTGLiJiIguwb/+9S+kpaXBbDajd+/eeOmllwKOa5p2QbU1IiICixcvBgDU1dXh4YcfRmJiIiwWC3r16oX58+f7zi0pKcEvf/lLxMbGwm6346abbsLu3bubvJ5Vq1YhISEBCxcuxKBBg9CnTx9MmDABb7/9NqxWK4ALp5T37t0bmqZd8OF16tQpTJo0CREREYiKisIdd9yB48ePN/tzWbp0KW677baA2z7++GMMHjwYVqsV0dHRyMzMRGVlJQDA5XLh0UcfRUREBKKjo/HEE09g2rRpuPPOOxu9//Xr1/sC9k033QRN0/DDH/4Q7733HpYvX+57DuvXrwcApKWlISkpCZ9++mmz101ERBQMDNxERESttGPHDkyaNAn33nsv9u7di9///veYN2+eL0y3xKuvvorPPvsMH374IXJycrBkyRL07t3bd/zuu+9GQUEBvvjiC+zYsQPDhg3DuHHjmqzUJiQkIDc3Fxs2bGjxNWzbtg25ubnIzc3F6dOnMWrUKNxwww0AAIfDgfHjxyMsLAwbN27E5s2bERoaigkTJqCurq7R+ysqKkJ2djbS09N9t+Xm5mLy5Mm47777cODAAaxfvx4TJ06Ed0XbSy+9hMWLF+Pvf/87Nm3ahKKiombD8ZgxY5CTkwNA3vTIzc3FZ599hkmTJmHChAm+5zNmzBjf92RkZGDjxo0t/rkQERG1FUNHXwAREVFn8vnnnyM0NDTgNu+UbK+XX34Z48aNw7x58wAAqampyM7Oxosvvojp06e36HFOnjyJfv364frrr4emaQFTsDdt2oStW7eioKAAZrMZAPDHP/4Ry5Ytw8cff9xoQ7K7774bK1euxI033oiEhASMGjUK48aNwy9+8QvY7fZGryE2Ntb379mzZyM3Nxfbtm0DAHzwwQdwu9145513fFXvd999FxEREVi/fj1+/OMfN/qclFJISkry3Zabmwun04mJEyf6nuPgwYN9x1955RU89dRTmDhxIgDgzTffxMqVK5v8uZlMJt+0+KioKCQkJACQ6fK1tbW+r+tLSkpCVlZWk/dJREQULKxwExER1fOjH/0Iu3btCvh45513As45cOAAxo4dG3Db2LFjcfjw4QvCeVOmT5+OXbt2oX///pg1axZWrVrlO7Z7925UVFQgOjoaoaGhvo9jx47hyJEjjd6fXq/Hu+++i9OnT2PhwoXo0aMHXnjhBaSlpSE3N7fZa3nrrbfwt7/9DZ999pkvhO/evRvff/89wsLCfI8fFRWFmpqaJq+huroaAGCxWHy3DRkyBOPGjcPgwYNx99134+2330ZxcTEAoLS0FLm5uRg5cqTvfIPBEFAhbwtWqxVVVVVtep9EREQtwQo3ERFRPSEhIejbt2/AbZeyrZSmaWi4EYjD4fD9e9iwYTh27Bi++OILfPXVV5g0aRIyMzPx8ccfo6KiAomJib51yPVdrEt6jx49MHXqVEydOhXPP/88UlNT8eabb+K5555r9Px169bhkUcewfvvv49rr73Wd3tFRQWGDx+OJUuWXPA99Svj9cXExAAAiouLfefo9XqsXr0a33zzDVatWoVFixbh6aefxpYtWxAVFdXsc2krRUVFTV4zERFRMLHCTURE1EoDBw7E5s2bA27bvHkzUlNTodfrAUgorV9ZPnz48AVVVrvdjnvuuQdvv/02PvjgA/zrX/9CUVERhg0bhry8PBgMBvTt2zfgwxtqWyIyMhKJiYm+BmUNff/99/jZz36G//qv//JN6fYaNmwYDh8+jLi4uAuuITw8vNH769OnD+x2O7KzswNu1zQNY8eOxXPPPYesrCyYTCZ8+umnCA8PR2JiIrZs2eI71+l0YseOHS1+jl71u7E3tG/fPgwdOrTV90lERHS5GLiJiIha6bHHHsOaNWvw/PPP49ChQ3jvvffw2muv4fHHH/edc9NNN+G1115DVlYWtm/fjpkzZ8JoNPqOv/zyy3j//fdx8OBBHDp0CB999BESEhIQERGBzMxMjB49GnfeeSdWrVqF48eP45tvvsHTTz+N7du3N3pNf/3rX/Hggw9i1apVOHLkCPbv348nn3wS+/fvv6BrOCDTv2+77TYMHToUDzzwAPLy8nwfADBlyhTExMTgjjvuwMaNG3Hs2DGsX78es2bNarLir9PpkJmZiU2bNvlu27JlC1544QVs374dJ0+exCeffIJz585h4MCBAGTt+IIFC7Bs2TIcPHgQv/71r1FSUtLqMenduzf27NmDnJwcFBYW+mYTVFVVYceOHY2uOSciIgo2Bm4iIqJWGjZsGD788EMsXboUgwYNwjPPPIP//u//DmiY9tJLLyE5ORk33HADfv7zn+Pxxx+HzWbzHQ8LC8PChQuRnp6OESNG4Pjx41ixYgV0Oh00TcOKFSvwgx/8ADNmzEBqairuvfdenDhxAvHx8Y1eU0ZGBioqKjBz5kykpaXhxhtvxHfffYdly5bhxhtvvOD8/Px8HDx4EGvWrEFSUhISExN9HwBgs9mwYcMGpKSkYOLEiRg4cCDuv/9+1NTUNNmEDQB++ctfYunSpXC73QCkir9hwwbccsstSE1Nxe9+9zu89NJLuPnmmwHImxdTp07FtGnTMHr0aISFheGuu+5q9Zj86le/Qv/+/ZGeno7Y2FjfDITly5cjJSXF132diIioPWmq4QIzIiIiokuklMLIkSPxm9/8BpMnT76k+5g+fTpKSkou2Mf8UowaNQqzZs3Cz3/+88u+LyIiotZihZuIiIjajKZpeOutt+B0Ojv6UlBYWIiJEydecvAnIiK6XKxwExERUafSlhVuIiKijsTATURERERERBQEnFJOREREREREFAQM3ERERERERERBwMBNREREREREFAQM3ERERERERERBwMBNREREREREFAQM3ERERERERERBwMBNREREREREFAQM3ERERERERERB8P8BEBiShAl9wyAAAAAASUVORK5CYII=", "text/plain": [ "