
COSC 312 Course Workbook Spring 2024

Instructor: Dr. M.W. Berry

Created by Dr. Michael W. Berry

Department of Electrical Engineering and Computer Science
University of Tennessee, Knoxville

January 23rd, 2024 – May 7th, 2024

Contents

1 Theory of Computation, Introduction 3

2 Finite Automata 10

3 Regular Languages 15

3.1 Nondeterminism . 15

3.2 Closure Properties . 17

3.3 DFA/NFA Equivalence . 18

4 Nonregular Languages 23

4.1 Pumping Lemma . 24

4.2 Pumping Lemma (for Regular Languages) Proofs 25

5 Context-Free Languages 28

5.1 Design Techniques . 31

5.2 Chomsky Normal Form . 34

6 Pushdown Automata 38

7 Pumping Lemma (CFLs) 44

8 Turing Machines 50

9 Decidability 59

1

Contents

10 Halting Problem 65

11 Reducibility 71

12 Complexity 77

13 Lambda-Calculus 86

2

1 Theory of Computation, Introduction

Problem solving has three components: unknowns, data, and conditions. Solving a prob-
lem means equates to finding a way of determining the unknowns from given data such
that conditions of the problem are satisfied.

Example: Find the remainder of n/5. unknown: int r, data: int n, condition: n mod 5 = r.

The traditional areas of the Theory of Computation (TOC):

• Automata – provide problem solving devices.

• Computability – provide framework that can characterize devices by their com-
puting power.

• Complexity – provide framework to classify problems according to time/space
complexity of the tools used to solve them.

Let’s briefly breakdown each of these areas.

Automata:

• Abstraction of computing devices.

• How much memory can be used?

• What operations can be performed?

Computability:

• Study different computing models and identify the most powerful ones.

• Range of problems: very simple (solved by the simplest to most most powerful
models) to very complex (solution cannot be provided by even the most powerful
models).

• Problems can be undecidable or uncomputable. Example: determine if a procedure
will terminate on a given input (Can any algorithm do this?).

Complexity:

• Computing problems range from easy to hard; sorting is easier than scheduling.

• Q: What makes some problems computationally hard and others easy?

3

1. Theory of Computation, Introduction

Problem Abstraction:

• Data - abstracted as a word in a given alphabet.

• Conditions - abstracted as a set of words called a language.

• Unknowns - A Boolean variable: true if a word is in the language or false other-
wise.

Example: All positive numbers divisible by 5: S = {5, 10, 15, . . .}.

Abstraction of Data:

• Σ: alphabet – a finite, nonempty set of symbols.

• Σ∗: all words of finite length built up using Σ.

• Rules:(1) the empty word (ε) is in Σ∗; (2) if w ∈ Σ∗and a ∈ Σ, then aw ∈ Σ∗, and (3)
nothing else is in Σ∗.

Example: If Σ= {0, 1}, then Σ∗= {ε, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, . . .}.

Sets:

• A set is a collection of objects that is represented as a unit; objects in a set are called
elements or members.

• Sets can be described formally by enumerating their elements or by providing a
property satisfied by all the elements.

Example: S = {x|x is an integer divisible by 5}.

Subsets:

• Given sets A and B, A = B if every member of A is a member of B and vice-versa.

• For sets A and B, A ⊆ B if every member of A is a member of B and A could be
equal to B.

• A is a proper subset of B (i.e., A ⊂ B) if A is a subset of B and is not equal to B.

4

Infinite and Empty Sets:

• An infinite set contains infinitely many elements. You cannot write a list of all
elements of an infinite set; typically define by S = {e|p(e)}.

• A set with no (zero) members is called the empty set and is denoted by ∅ .

Operations with Sets:

• Given sets A and B, A ∪ B = {x|x ∈ A ∨ x ∈ B}.

• Given sets A and B, A ∩ B = {x|x ∈ A ∧ x ∈ B}, and A–B = {x|x ∈ A ∧ x 6∈ B}.
Let’s draw a Venn diagram for A ∩ B and A–B.

• The Power set of a set A is defined as P(A) = {B|B ⊆ A}. Suppose A = {0, 1}.
What is P(A)?

5

1. Theory of Computation, Introduction

Sequences:

• A sequence of objects is a list of objects in some order; the empty sequence denoted
by ε.

• The length of a sequence x = a1, a2, . . . , an is defined by |x| = n.

• The concatenation of x and y = b1, b2, . . . , bm is x · y = a1a2 . . . anb1b2 . . . bm.

Tuples:

• Finite sequences are often called tuples.

• A sequence with k elements is called a k-tuple. Example: (7, 21, 57) is a 3-tuple.

• A 2-tuple is normally called a pair.

Cartesian Product (CP):

• A× B = set of all pairs whose first element is a member of A and second element
is a member of B.

• A1 × A2 × · · · × Ak = {A1 × A2 × · · · Ak−1 × Ak}.

• Ak = A× A× · · · × A (CP of k A’s)

Functions:

• A function is a mathematical object that defines some input-output relationship.

• A function f takes an input and produces output: f (a) = b; the same input always
produces the same output.

• A function is also called a mapping; if f (a) = b, we say f maps a to b.

• The domain is the set of possible inputs to function f , and the range is the set of
possible outputs of function f .

• To denote that f is a function with domain D and range R, we write f : D → R.

6

• When the domain of a function f is A1 × A2 × · · · × Ak, the input to f is a k-tuple
(a1, a2, . . . , ak) and ai, i = 1, 2, . . . , k, are called the arguments of f .

• A k-ary function f has k arguments (k called the arity of the function f); unary
(k = 1), binary (k = 2).

Predicates (or Properties):

• A predicate (or property) is a function whose ranges is the set {True, False}.
Example: even: N → {True, False},
even(n) = True, if n = 2k for some k;
even(n) = False, if n = 2k + 1, for some k.

• A property whose domain is a set of k-tuples A × A × · · · A is called a relation
(k-ary relation).

Boolean Operations:

• Boolean values are manipulated by Boolean operations.

• Negation (NOT, ¬): ¬0 = 1, ¬1 = 0.

• Conjunction (AND, ∧): 0∧ 0 = 0, 0∧ 1 = 0, and 1∧ 1 = 1.

• Disjunction (OR, ∨): 0∨ 0 = 0, 0∨ 1 = 1, 1∨ 0 = 1, and 1∨ 1 = 1.

Ordered Pairs:

• For x, y elements of a set, (x, y) is an ordered pair if (1) (x, y) = (u, v) ⇒ x =

u, y = v, and (2) x = u, y = v⇒ (x, y) = (u, v).

• A definition of the ordered pair that satisfies (1) and (2) above is (x, y) = {{x}, {x, y}}.

Set Relations:

• A relation on a set A is a set of ordered pairs of elements of A.
Example: < on N where < is the set relation {(x, y)|x, y ∈ N ∧ x < y}.

7

1. Theory of Computation, Introduction

• Notation: x R y for a relation R.

• Properties of Relations:

– Transitive: x R y ∧ y R z⇒ x R z

– Reflexive: x R x

– Symmetric: x R y⇒ y R x

– dom(R) = {x ∈ A| ∃ y ∈ A ∧ (x, y) ∈ R} is the domain of the relation R.

– ran(R) = {y ∈ A| ∃ x ∈ A ∧ (x, y) ∈ R} is the range of the relation R.

Special Relations:

• Total order: R is a total order on the set A if (1) R satisfies the trichotomy (∀x, y ∈
A, x = y or x R y or y R x), and (2) R is transitive.
Example: < is total on N .

• Given a function f : X → Y, it defines the relation <x, y> where f (x) = y; a
relation R is a function if for any x, there exists a unique y so that x R y.

• An equivalence relation captures the notion of two objects being equal in some
feature.

• A binary relation R is an equivalence relation if R satisfies:

1. R is reflexive (∀x, x R x),

2. R is symmetric (∀x, y, x R y iff y R x), and

3. R is transitive (∀x, y, z, x R y and y R z⇒ x R z).

Strings:

• An alphabet is a finite, nonempty set of symbols.

• A string over an alphabet is a finite sequence of symbols from that alphabet (sym-
bols concatenated).

• If w is a string over Σ, the length of w (denoted |w|) is the number of symbols
contained in w.

• The string of length zero is called the empty string and is denoted by ε.

8

• If |w| = n, we can write w = a1a2 . . . an, ai ∈ Σ, i = 1, 2, . . . , n.

String Operations:

• The reverse of w = w1w2 . . . wn, written as wR, is defined by wR = wn . . . w2w1.

• A string z is a substring of w if w = xzy for x, y not necessarily the empty strings;
x is called the prefix of w and y is called the suffix of w.

• The concatenation of strings x and y, where x = x1x2 . . . xm and y = y1y2 . . . yn, is
defined as the string xy = x1x2 . . . xmy1y2 . . . yn.

• We define xk = xx . . . x, where x is repeated k times.

9

2. Finite Automata

2 Finite Automata

Formal Language:

• A formal language is a set of strings over a given alphabet.

• How do you specify a language?

• How do you recognize strings in a language?

• How do you translate the language?

Abstraction of Problems:

1. Data – word in a given alphabet.
Σ: alphabet, a finite non-empty set of symbols.
Σ∗: all words of finite length built-up using Σ.

2. Conditions – set of words called a language.
Any subset L ⊆ Σ∗is a formal language.

3. Unknown – a boolean variable that is true, if word is in language; false, otherwise.
Given w ∈ Σ∗and L ⊆ Σ∗, is w ∈ L?

Formal Definition:

• Simplest computational model also referred to as a finite-state machine or finite
automaton (FA).

• Representations: graphical, tabular, and mathematical.

• A finite automaton is a 5-tuple (Q, Σ, δ, q0, F), where Q is a finite set of states, Σ is
a finite set of symbols (alphabet), the transition function δ maps Q×Σ to Q, q0 ∈ Q
is the start (initial) state, and F ⊆ Q is the set of accept (final) states.

10

FA Applications:

• Parsers for compilers

• Pattern recognition

• Speech processing and OCR

• Financial planning and market prediction

FA Computation:

• Automaton M1 receives input symbols one-by-one (left to right).

• After reading each symbol, M1 moves from one state to another along the transition
that has that symbol as its label.

• When M1 reads the last symbol of the input, it produces the output: accept if M1

is in an accept state, or reject if M1 is not in an accept state.

Language Recognition:

• If L is the set of all strings that a FA M accepts, we say that L is the language of the
machine M and write L(M) = L.

• An automaton may accept several strings, but it always recognizes only one lan-
guage.

• If a machine accepts no strings, it still recognizes one language, namely the empty
language ∅.

Formal Definition of Acceptance:

• Let M = (Q, Σ, δ, q0, F) be a FA and w = a1a2 . . . an be a string over Σ. We say M
accepts w if a sequence of states r0, r1, . . . , rn exist in Q such that

1. r0 = q0 (where machine starts),
2. δ(ri, ai+1) = ri+1, i = 0, 1, . . . , n− 1, (transitions based on δ) and
3. rn ∈ F (input accepted).

11

2. Finite Automata

Regular Languages:

• We say that a FA M recognizes the language L if L = {w |M accepts w}.

• A language is called a regular language, if there exists an FA that recognizes it.

• Q: How do you design/build an FA?

FA Design Approach:

1. Identify finite pieces of information you need, i.e., the states (possibilities).

2. Identify the condition (or alphabet) to change from one state to another.

3. Identify the starting and final/accept states.

4. Add missing transitions.

Example: Let M1 = (Q, Σ, δ, q1, F), Q = {q1, q2, q3}, Σ = {0, 1}, and F = {q2}. Let’s
define a transition function δ for M1 and then draw the resulting (graph-based) state
transition diagram for M1.

Q: What is L(M1)?

12

Example: Let M2 = (Q, Σ, δ, q1, F), Q = {q1, q2}, Σ = {0, 1}, and F = {q2}. Let’s define
a transition function δ for M1 and then draw the resulting (graph-based) state transition
diagram for M2.

Q: What is L(M2)?

Example: Now considerM3 = (Q, Σ, δ, q1, F), Q = {q1, q2}, Σ = {0, 1}, and F = {q1} that
has the same transition function δ of M2. Let’s draw the resulting (graph-based) state
transition diagram for M3.

Q: What is L(M3)?

13

2. Finite Automata

Example: For our last DFA example, consider M4 = (Q, Σ, δ, s, F), Q = {s, q1, q2, r1, r2},
Σ = {a, b}, and F = {q1, r1}. We will define a transition function δ for M4 and then draw
the resulting (graph-based) state transition diagram for M4.

Q: What is L(M4)?

14

3 Regular Languages

Let A and B be languages:

• Union: A ∪ B = {x | x ∈ A ∨ x ∈ B}

• Concatenation: A ◦ B = {xy | x ∈ A ∧ y ∈ B}

• Star: A∗ = {x1x2 . . . xk | k ≥ 0∧ xi ∈ A, 0 ≤ i ≤ k}

Q: Is ε always a member of A∗ regardless of the language A?

Q: What is another name for the language A ◦ A∗?

Closures of Regular Languages:

• Theorem: Class of regular languages is closed under intersection. (Proof: Use cross-
product construction of states.)

• Theorem: Class of regular languages is closed under complementation. (Proof:
Swap accept/non-accept states and show FA recognizes the complement.)

3.1 Nondeterminism

Nondeterministic Finite Automata (NFA):

• Every step of a FA computation follows in a unique way from the proceeding step;
a deterministic computation.

• Nondeterministic computation – choices exist for the next state; a nondeterministic
FA (NFA).

• Ways to introduce nondeterminism:

1. more choices for next state (zero, one, many),

2. state may change to another state without reading any symbol.

15

3. Regular Languages

NFA Formal Definition:

• An NFA is a 5-tuple (Q, Σ, δ, q0, F), where Q is a finite set of states, Σ is a finite set
of symbols (alphabet), the transition function δ maps Q× Σ ∪ {ε} to P(Q), q0 ∈ Q
is the start (initial) state, and F ⊆ Q is the set of accept (final) states.

• Notice that the range of the transition function δ for an NFA is the power set of Q
(P(Q)).

Formal Definition of Acceptance (NFA):

• Let Let N = (Q, Σ, δ, q0, F) be an NFA and w = y1y2 . . . yn be a string over Σε =

Σ∪{ε}. We say N accepts w if a sequence of states r0, r1, . . . , rm exist in Q such that

1. r0 = q0,

2. δ(ri, yi+1) = ri+1 for i = 0, 1, . . . , m− 1, and

3. rm ∈ F.

NFA Motivation:

• For some problems, they are much easier to construct than a DFA.

• NFA may actually be smaller than a DFA that performs the same task; but NFA
computation is usually more expensive.

• Every NFA can be converted into an equivalent DFA (in theory, every NFA has an
equivalent DFA to recognize the same language).

• NFAs can be used to show that regular languages are closed under union, concate-
nation, and star operations.

16

3.2. Closure Properties

3.2 Closure Properties

Union:
Using a schematic proof, we will show that the class of regular languages is closed under
the union operation (using NFAs).

Concatenation:
Using a schematic proof, we will show that the class of regular languages is closed under
the concatenation operation (using NFAs). More specifically, if A1 and A2 are regular
languages, we can show that A1 ◦ A2 is also a regular language.

17

3. Regular Languages

Star Operation:
Using a schematic proof, we will show that the class of regular languages is closed under
the star operation (using NFAs). More specifically, if A is a regular language, we can
show that A∗ is also a regular language.

3.3 DFA/NFA Equivalence

NFA to DFA Conversion:

• Let Let N = (Q, Σ, δ, q0, F) be the NFA that recognizes the language A and construct
the DFA M that also recogizes A. Define M = (Q′, Σ, δ′, q′0, F′).

• For any R ⊆ Q, define E(R) to be the collection of states that can be reached from
R by going along ε transitions, including members of R themselves. Then,

E(R) = R ∪ {q ∈ Q | ∃r1 ∈ R, r2, . . . , rk ∈ Q, ri+1 ∈ δ(ri, ε), rk = q}.

• Now, modify δ′ of M to place additional links (edges) on all states that can be
reached by going along ε edges after every step:

δ′(R, a) = {q ∈ Q | q ∈ E(δ(r, a)), for some r ∈ R}.

• Finally, set q′0 = E({q0}) and F′ = {R ∈ Q′ | R contains an accept state of N}.

18

3.3. DFA/NFA Equivalence

Example: N1 = (Q, Σ, δ, q1, F) , Q = {q1, q2, q3}, Σ ={a, b}, and F = {q1}.
What is N1’s start state?

Example: Let N2 = (Q, Σ, δ, q1, F), Q = {q1, q2, q3, q4}, Σ = {0, 1}, and F = {q4}. We will
define a transition function δ for N2 that has an ε transition and then draw the resulting
(graph-based) state transition diagram for N2.

Q: What is L(N2)?

19

3. Regular Languages

Example: Suppose Σ = {a, b}. Let F1 be a DFA that recognizes the language A1 =

{w | w has exactly two a′s} and F2 be a DFA that recognizes the language
A2 = {w | w has at least two b′s}.

Let’s build the DFA F = F1 × F2 that recognizes the language
A = {w | w has exactly two a′s and has at least two b′s}.

20

3.3. DFA/NFA Equivalence

Example: Suppose N3 is an NFA defined by N3 = (Q, Σ, δ, q1, F), where Q = {q1, q2, q3},
Σ = {a, b}, and F = {q1}. For simplicity of notation, we will use simple integers to rep-
resent states in the corresponding state diagram for N3. That is, q1 ≡ 1, etc. Let’s create
an equivalent DFA D3 = (Q′, Σ, δ′, q′1, F′) that recognizes the same language that N3

recognizes.

We will draw the state diagram for N3 below and then derive the start state q′1 and final
states F′ for D3 based on the power set of states from N3.

21

3. Regular Languages

Now, let’s represent all the possible states of D3 and add transitions based on δ from N3.

Do you see any unreachable states? If so, cross them out in the state diagram for D3 and
then redraw/simplify the final state diagram for D3 below.

22

4 Nonregular Languages

We say that R is a regular expression if R is . . .

1. a for some a ∈ Σ,

2. ε (language contains only the empty string),

3. ∅ (language has no strings),

4. (R1 ∪ R2), where R1, R2 are regular expressions,

5. (R1 ◦ R2), where R1, R2 are regular expressions, or

6. R∗1 , where R1 is a regular expression.

Theorem: A language is regular if and only if some regular expression (RE) describes it.

Proof. If a language R is described by a RE, then A is recognized by an NFA so A must
be regular. If the language R is regular, then it is recognized by a DFA from which a RE
can be deduced.

Q: Is B = {0n1n|n ≥ 0} a regular language?

A DFA that recognizes B needs to remember how many 0s have been seen so far as it
reads the input; the DFA would have to keep track of an unlimited number of possibilities
– can we do this with a finite number of states?

Warning: Just because a language might seem to require unbounded (infinite) memory
to recognize it – it still could be regular.

Suppose you have the following two languages: C = {w | w has an equal number of 0s
and 1s} and D = {w | w has an equal number of 01 and 10 substrings}.

Which one is regular?

Q: How do we prove the nonregularity of a language?

23

4. Nonregular Languages

4.1 Pumping Lemma

Pumping Property:

• All strings in a language can be pumped if they are at least as long as a certain
value called the pumping length.

• Another interpretation: every string contains a section that can be repeated any
number of times with the resulting string remaining in the language.

• Example: sqrt(sqrt(sqrt(. . . sqrt(x)...)))

Pumping Lemma:
If A is a regular language, then there exists a number p (the pumping length) where, if
s is any string in A of length at least p, then s may be divided into three pieces, s = xyz
subject to . . .

1. ∀i ≥ 0, xyiz ∈ A,

2. |y| > 0, and

3. |xy| ≤ p.

Pumping Lemma (PL) Proof Construction:

• Let M = (Q, Σ, δ, q1, F) be be a DFA that recognizes the language A. Assign a
pumping length p to the number of states of M.

• Show that any string s ∈ A, |s| ≥ p may be broken into xyz satisfying the three PL
conditions.

• If there are no strings in A of length at least p, then the PL is true because all three
conditions hold for all strings of length as least p (if there are NO such strings).

Pumping Lemma:

Proof. Let M = (Q, Σ, δ, q1, F) be a DFA that recognizes A and let p be the size of Q (i.e.,
the number of states). Let s = s1s2 . . . sn be a string over Σ with n ≥ p and r = r1r2 . . . rn+1

be the sequence of states encountered while processing s, i.e., ri+1 = δ(ri, si), 1 ≤ i ≤ n.

24

4.2. Pumping Lemma (for Regular Languages) Proofs

We know that n + 1 ≥ p + 1, why?

Then, among the first p + 1 elements in the sequence r1r2 . . . rn+1, there must be a re-
peating state, say rj, rk. What principle is this based on?

Let rk be the recurring state among the first p + 1 states in the sequence starting with r1,
so k ≤ p + 1. Let x = s1s2 . . . sj−1, y = sjsj+1 . . . sk−1, and z = sksk+1 . . . sn.

So, x takes M from r1 to rj, y takes M from rj to rj and z takes M from rj to rn+1; recall
that rj = rk and that rn+1 is an accept state. Therefore,

• M must accept xyiz, for i ≥ 0 (PL Condition 1).

• Since j 6= k then |y| > 0. (PL Condition 2).

• Since k ≤ p + 1 then |xy| ≤ p (PL Condition 3).

4.2 Pumping Lemma (for Regular Languages) Proofs

Technique for using PL to prove a language A is not regular:

1. Assume A is regular and obtain a contradiction.

2. PL guarantees existence of a pumping length p such that all strings of length p or
greater (in A) can be pumped.

3. Find s ∈ A, |s| ≥ p that cannot be pumped; consider all the ways of dividing s into
x, y, z and show that for each division, at least one of the PL conditions fail to hold.

Example: Use the PL to prove that the language B = {0n1n | n ≥ 0} is not regular.

Proof. Assume B is regular and let p be the pumping length for B. Choose s = 0p1p ∈ B
so that clearly s > p. By the PL, we can partition s = xyz such that for all i ≥ 0, xyiz ∈ B.
Let’s consider three possible cases for the contents of substring y:

25

4. Nonregular Languages

1.

2.

3.

By obtaining a contradiction in all three of the cases above, we can conclude that Con-
dition 1 of the PL will be violated regardless of the choice for y. Therefore, B cannot be
regular as assumed.

Q: How might the proof above be simplified using Condition 3 of the PL to constrain
the contents of the substring y?

26

4.2. Pumping Lemma (for Regular Languages) Proofs

Example: Use the PL to prove that the language E = {0i1j | i > j} is not regular.

Proof. Assume E is regular and let p be the pumping length for E. Choose s = 0p+11p ∈ E
so that clearly s > p. By the PL, we can partition s = xyz such that for all i ≥ 0, xyiz ∈ E.
Start with Condition 3 of the PL to determine the contents of substring y and see if you
can get a violation of Condition 1 of the PL for any choice of y.

27

5. Context-Free Languages

5 Context-Free Languages

We have shown that L = {0n1n | n ≥ 0} cannot be specified by by a FA or regular
expression; Context-Free Grammars (or CFGs) provide a more powerful way to specify
languages. A CFG is a 4-tuple (V,Σ,R, S), where

• V is a finite set of symbols (variables or nonterminals),

• Σ is a finite set of symbols disjoint from V (terminals),

• R is a finite set of specification rules of the form lhs → rhs, lhs ∈ V, rhs ∈ (V∪ Σ),
and S ∈ V is the start variable.

Example: CFG G1 has the following specification rules:

A → 0A1
A → B
B → #

The start variable for G1 is A.

What are the nonterminals? What are the terminals?

Language Specification:

A grammar generates each string of the language in three basic steps:

1. Write down start variable; lhs of first spec rule,

2. Find variable that is written down and a rule whose lhs is that variable; replace the
written down variable with the rhs of that rule,

3. Repeat Step 2 until no variables remain in string.

Example: Use the CFG G1 (above) to derive the string 000#111. Show derivation and
corresponding parse tree.

28

The language specified by the G1 grammar is given by L(G1) = {0n#1n | n ≥ 0}. A
language generated by a CFG is called a context-free language (or CFL).

Direct Derivation:

If u, v, w ∈ (V ∪ Σ)∗, i.e., are strings of variables and terminals, and A → w ∈ R is a
grammar rule, then we say that uAv yields uwv or uAv ⇒ uwv. Alternatively, uwv is
directly derived from uAv using the rule A→ w.

Derivation:

We write u ⇒ v, if u = v or if a sequence u1, u2, . . . , uk ∈ (V ∪ Σ)∗ exists for k ≥ 0, and
u1 ⇒ u2 ⇒ · · · ⇒ uk ⇒ v. We say that u1, u2, . . . , uk, v is a derivation of v from u1.

If G = (V, Σ, R, S) is a CFG, then the language specified by G (or the language of G) is a
CFL, i.e., L(G) = {w ∈ Σ∗ | S→ w}.

Example: Suppose G3 is a CFG defined by

G3 = ({S}, {a, b}, {S→ aSb|SS|ε}, S).

29

5. Context-Free Languages

What is L(G3)?

CFG Applications:

• compiler design and implementation,

• programming language specification,

• scanners, parsers, and code generators.

Example: Let G4 = ({E, T, F}, {a,+, ∗, (,)}, R, E), where R is given by

E→ E + T|T, T → T ∗ F|F, F → (E)|a .

What is L(G4)?

30

5.1. Design Techniques

Now, let’s create parse trees (using G4) for the strings a + a ∗ a and (a + a).

5.1 Design Techniques

CFG Design Technique No. 1:

• Many CFGs are unions of simpler CFGs.

• Combination involves putting all the rules together and adding the new rules

s→ s1|s2| · · · |sk,

where the variables si, 1 ≤ i ≤ k, are the start variables of the individual grammars
and the s is a new variable.

Example: Design a grammar for the language

{0n1n | n ≥ 0} ∪ {1n0n | n ≥ 0} .

31

5. Context-Free Languages

CFG Design Technique No. 2:
Construct a DFA for the language first.

Conversion procedure:

1. Make a variable Ri for each state qi of the DFA.

2. Add the rule Ri → Rj to the CFG if δ(qi, a) = qj is a transition in the DFA.

3. Add the rule Ri → ε, if qi is an accept state of the DFA.

4. If q0 is the start state of the DFA, make R0 the start variable of the CFG.

Theorem: Every regular language is context-free.

CFG Design Technique No. 3:

• Certain CFLs contain strings with two related substrings, e.g., 0n and 1n in {0n1n |n ≥
0}.

• Machine would need to remember an unbounded amount of information about
one of the substrings.

32

5.1. Design Techniques

• CFG that handles such cases uses a rule of the form R→ uRv.

Example: Consider the CFG G = ({S, B}, {a, b}, {S → aSB|B|ε, B → bB|b}, S). Let’s de-
termine L(G).

Consider a few derivations . . .

S→ aSB→ aaSBB→ aaSbBB
S→ aSB→ aaSBB→ aaSBbB
S→ aSB→ aaSBB→ aaSbBb
S→ aSB→ aaSBB→ aaBB

B→ bB→ bbB→ bk−1B→ bk, k ≥ 1
S→ aSB→ aSbk, k ≥ 1

So, L(G) =

Ambiguous Grammar:
If a CFG generates the same string in different ways, that string is derived ambiguously
in the grammar. Such a CFG is called ambiguous.

Example: Consider the CFG G5 that has the rules: E→ E + E | E ∗ E | (E)|a. Let’s produce
two different derivation trees for a + a ∗ a:

33

5. Context-Free Languages

Derivation Order:
It is possible for 2 different derivations to produce the same derivation tree because they
differ in the order in which they replace nonterminals (not the rules).

• Leftmost derivation: replace the leftmost nonterminal

• Rightmost derivation: replace the rightmost nonterminal at each step.

These two derivations of a string w are unique (and are equivalent to the derivation tree).

Example: We will show that a particular CFG G = (V, Σ, R, S) with Σ = {a, b, c} for the
CFL A = {aibjck | i = j ∨ j = k ∧ (i, j, k ≥ 0)} is inherently ambiguous. That is, from the
start variable (S) we need to produce the same set of terminals. Keep in mind that such
a set of terminals could just be the empty string (ε).

5.2 Chomsky Normal Form

The Chomsky Normal Form (CNF) is a simplification procedure for CFGs. The format
for rules in CNF has one of two forms:

• A→ BC, or

• A→ a, where a is a terminal and A, B, C are nonterminals and B, C may not be the
start variable. The rule S→ ε for the start variable S is not excluded.

34

5.2. Chomsky Normal Form

Theorem: Any CFL is generated by a CFG in CNF.

Proof. Stage 1 – Add a new start symbol S0 and rule S0 → S, where S was the original
start variable (do not want S in the rhs of any rule).

Stage 2 – Eliminate all ε-rules.
Repeat . . . (until all ε-rules are removed):

1. Eliminate the ε-rule A→ ε, where A is not the start variable.

2. For each occurrence of A on the rhs of a rule, add a new rule with that occurrence
of A deleted.

3. Replace the rule B → A (if present) by B → A | ε unless the rule B → ε has not
been previously eliminated.

Example: To delete A → ε, replace B → uAv by B → uAv | uv; replace B → uAvAw by
B→ uAvAw | uvAw | uAvw | uvw.

Stage 3 – Remove all unit rules.
Repeat . . . (until all unit rules are removed):

1. Remove a unit rule A→ B.

2. For each rule B → u that appears, add the rule A → u, unless it was a previously-
removed unit rule (u can be a string of variables and terminals).

Stage 4 – Convert all remaining rules.
Repeat . . . (until no rules of the form A→ u1u2 . . . uk with k ≥ 3 remain):

1. Replace a rule A → u1u2 . . . uk, k ≥ 3, where each ui, 1 ≤ i ≤ k, is a variable or a
terminal, by A→ u1A1, A1 → u2A2,. . ., Ak−2 → uk−1uk, where A1, A2, . . . , Ak−2 are
new variables.

2. If k ≥ 2, replace any terminal uk with a new variable Ui and add the rule Ui → uk.

Example: Convert the CFG G = (V, Σ, R, S), where R is given below, to CNF.

R: S→ ASA | aB
A→ B | S
B→ b | ε

35

5. Context-Free Languages

Step 1 – new start variable.

Step 2 – remove ε rules.

Step 3 – remove unit rules.

36

5.2. Chomsky Normal Form

Step 4 – convert remaining rules.

37

6. Pushdown Automata

6 Pushdown Automata

A pushdown automata (or PDA) is similar to an NFA but it has a stack. The stack
provides additional memory beyond finite memory available in control; it allows the
PDA to recognize some nonregular languages.

Two options to prove that a language is context-free:

• Construct a CFG that generates it, or

• construct a PDA that recognizes it.

Some CFLs are more easily described in terms of their generators, whereas others are
more easily described in terms of their recognizers. Let’s draw a schematic representa-
tion of the difference between an NFA and a PDA:

Terminology:

• Writing a symbol on the stack is called pushing the symbol.

• Removing a symbol from the stack is called popping the symbol.

• All access to the stack my be done only at the top (LIFO storage device).

The primary benefit of that stack is that it can hold an unlimited amount of data; a PDA
can recognize {0n1n | n ≥ 0} because it can use the stack to remember the number of 0s
it has seen (read).

38

Informal Algorithm for {0n1n | n ≥ 0}:

1. Read symbols from the input. As each 0 is read push it onto the stack.

2. As soon as a 1 is read, pop a 0 off the stack (for each 1 read). 3. If input finishes
when the stack become empty, accept; if stack becomes empty while there is still
input or input finishes while the stack is not empty, reject.

A PDA may be nondeterministic. Languages such as {0n1n | n ≥ 0} do not require nonde-
terminisim. However, the language {wwR | w ∈ {0, 1}∗} would require nondeterminism.
Why?

Formalization:

• A PDA may use different alphabets for input (Σ) and stack (Γ).

• Nondeterminism allows the PDA to make transitions on empty input. Define Σε =

Σ ∪ {ε} and Γε = Γ ∪ {ε}.

• The domain of the PDA transition function is Q× Σε × Γε, where Q is the set of
states.

• The range of the PDA transition function is P(Q× Γε).

δ : Q× Σε × Γε → P(Q× Γε)

PDA Formal Definition:

A PDA is a 6-tuple (Q, Σ, Γ,δ, q0, F), where Q, Σ, Γ are finite set of states, and . . .

1. Q is a set of states,

2. Σ is the input alphabet,

3. Γ is the stack alphabet,

4. δ : Q× Σε × Γε → P(Q× Γε) is the transition function,

5. q0 ∈ Q is the start state, and

6. F ⊆ Q is the set of all accept states.

39

6. Pushdown Automata

PDA Computation:

A PDA M=(Q, Σ, Γ,δ, q0, F) computes as follows . . .

M inputs w = w1w2 . . . wm, where each wi ∈ Σε.
There are a sequence of states r0, r1r2, . . . , rm ∈ Q and a sequence of strings s0, s1, . . . , sn ∈
Γ∗ that satisfy the following conditions . . .

1. r0 = q0, s0 = ε; begin with start state and empty stack;

2. (ri+1, b) ∈ δ(ri, wi+1, a), i = 0, 1, . . . , m − 1, where si = at and si+1 = bt for some
a, b ∈ Γ and t ∈ Γ∗;

3. rm ∈ F; accept state encountered at end of input.

Stack notation: a, b→ c or simply abc
a is read from the input, b is popped from the stack, and c is pushed onto the stack.
ε-cases:

• If a = ε, machine can transition without reading any input.

• If b = ε, machine can transition without popping any symbol from the stack.

• If c = ε, machine can transition without writing any symbol onto the stack.

Empty stack:

The PDA (by definition) does not consider the testing of an empty stack. We can achieve
this by initially placing a special char (say $) on the stack. When the PDA encounters
that char ($) again (on the stack), it knows the stack is effectively empty.

Both CFGs and PDAs specify context-free languages; we can always convert a CFG into
a PDA that recognizes the language of the CFG.

CFG – specifies a program language
PDA – specifies/implements the compiler

Theorem: : A language is context-free if and only if some PDA recognizes it.

40

1. If a language L is CF, then there is a PDA ML that recognizes it.

2. If a language L is recognized by a PDA ML, then there is a CFG GL that generates
L.

Lemma: If a language is context-free then some PDA recognizes it.

Proof.

1. Let A be a CFL so A has a CFG G that generates it.

2. Need to convert G into a PDA P that accepts a string w if G generates w.

3. P operates by determining a derivation of w.

What are the difficulties with the approach above?

Difficulties:

How do we decide which substitutions to make for a derivation? (PDA P nondetermin-
ism can help)

• At each step of the derivation, one of the rules for a particular variable is selected
non-deterministically.

• P has to start by writing the start variable on the stack and then continue working
the string w.

• If while consuming the string w, P arrives at a string of terminals that equals w,
then accept; otherwise, reject.

41

6. Pushdown Automata

Informal Description:

Place marker symbol $ and start variable on the stack.
Repeat:

1. If TOS (top of stack) is a variable symbol A, non- deterministically select a rule r
such that lhs(r) = A and substitute A by the string rhs(r).

2. If TOS is a terminal symbol, a, read the next input symbol and compare it with a;
if they match, pop the stack; if they do not match, reject this branch of nondeter-
minism.

3. If the TOS is a $ and all the text has been read, accept; otherwise reject.

Generic State Diagram for PDA P with the following stack operations:

1. TOS = variable: set δ(qloop, ε, A) = {(qloop, w) | A → w ∈ R}, where R is the set of
CFG rules.

2. TOS = terminal: set δ(qloop, a, a) = {(qloop, ε)}.

3. TOS = $: δ(qloop, ε, $) = {(qaccept, ε)}.

Recall notation: (read input, pop stack, push to stack)

42

Example: Let’s draw the state diagram for the PDA that would recognize the language
generated by the CFG G1 having rules S→ aTb | b and T → Ta | ε, with Σε = {a, b} ∪ {ε}.

Example: Let’s draw the state diagram for the PDA that would recognize the language
generated by the CFG G2 having rules E → E + T | T, T → T ∗ F | F, and F → (E) | a,
with Σε = {a,+, ∗, (,)} ∪ {ε}.

43

7. Pumping Lemma (CFLs)

7 Pumping Lemma (CFLs)

Recall that the Pumpling Lemma (or PL) was used to prove that a given language is or is
not regular. Another version of the PL for Context-Free Languages (or CFLs) states that
every CFL has a specific value called the pumping length such that all longer strings in
the language can be pumped. Pumping in this context means that a string can be divided
into five parts and that the 2nd and 4th parts may be repeated any number of times and
the resulting string is in the language.

Pumping Lemma for CFLs
If A is a CFL, then there exists a number p (the pumping length) where, if s is any string
in A of length at least p, then s may be divided into five pieces, s = uvxyz, satisfying the
following conditions:

1. ∀i ≥ 0, uvixyiz ∈ A,

2. |vy| > 0 (i.e., either v or y is not ε),

3. |vxy| ≤ p (i.e., the interior cannot be larger than p).

Pumping Lemma (PL) Schematic Proof

Proof. Let A be a CFL and G be the CFG that generates A. We have to show that any
sufficiently long s ∈ A can be pumped and remain in A.

• Because s ∈ A, it is derivable from G and say has a derivation tree Ds.

• The tree Ds must be very tall (for a long s).

• So Ds contains some relatively long path from the start variable (at root) to a ter-
minal at a leaf.

• On such a long path, some variable X must be repeated due to the pigeonhole prin-
ciple.

• The repetition of X allows for the replacement of a subtree under the second occurrence
of X to be replaced by the subtree under the first occurrence of X.

So, we may cut s into five pieces and repeat the 2nd and 4th partitions to obtain uvixyiz ∈
A, for any i ≥ 0.

44

Let’s illustrate the replacement described above for pumping up once.

Now, let’s create a similar illustration for pumping down v and y from the original string
s.

45

7. Pumping Lemma (CFLs)

Example: Use the PL for CFLs to prove that the language B = {anbncn | n ≥ 0} is not a
CFL.

Proof. Assume B is a CFL and let p be the pumping length for B. Choose s = apbpcp ∈ B
so that clearly s > p. By Condition 1 of the PL for CFLs, we can partition s = uvxyz such
that for all i ≥ 0, uvixyiz ∈ B. In order to show that s cannot be pumped, let’s consider
the ramifications of Condition 2 of the PL for CFLs for the contents of v and y.

Example: Use the PL for CFLs to prove that the language C = {aibjck | 0 ≤ i ≤ j ≤ k} is
not a CFL.

Proof. Assume C is a CFL and let p be the pumping length for C. Choose s = apbpcp ∈ C
so that clearly s > p. By Condition 1 of the PL for CFLs, we can partition s = uvxyz such
that for all i ≥ 0, uvixyiz ∈ C. Similar to the previous example, let’s consider the possible
contents for v and y.

46

1. Case when v and y contain only one type of alphabet symbol. In this case, it can be
shown that one of the symbols a, b, or c cannot appear in v or y. We can then break
this situation into three sub-cases:

(a) The a’s do not appear.

(b) The b’s do not appear.

47

7. Pumping Lemma (CFLs)

(c) The c’s do not appear.

2. Case when either v or y contain more than one type of alphabet symbol.

48

Example: Use the PL for CFLs to prove that the language D = {ww | w ∈ {0, 1}∗} is not
a CFL.

Proof. Assume D is a CFL and let p be the pumping length for D. Choose s = 0p1p0p1p ∈
D so that clearly s > p. By Condition 1 of the PL for CFLs, we can partition s = uvxyz
such that for all i ≥ 0, uvixyiz ∈ D. Using Condition 3 of the PL for CFLs, we can con-
sider the ways that the substring vxy (the interior) can straddle the midpoint of s. We can
show that under all situations, s cannot be pumped and thereby conclude that D could
not be a CFL.

49

8. Turing Machines

8 Turing Machines

Similar to a FA with a supply of unlimited memory. A Turing Machine (TM) can do
everything that a modern computing device can do; but there are problems that even a
TM cannot solve.

Tape:

↓
0 0 1 0 1 0 1 x

• Memory is modeled by a tape of symbols.

• Initially, tape contains only the input string and blanks everywhere else.

• A TM can store information by writing symbols on the tape.

• The tape can move its head left and right to read symbols.

• TM continues to move until it enters a state in which the next move is not defined.

TM –vs- FA, PDA:

write A TM tape allows both write and read ops; DFA and NFA have only an input tape
(read-only) and the tape head moves from left to right. PDA has both an input tape
and stack tape; we can read/write on the stack tape (when moves right it writes
and when head moves left it erases the current symbol).

size The TM tape is infinite; the input of FA/PDA is finite; the stack of a PDA is infinite.

accept FA/PDA accept a string when it has scanned all the input symbols and enters a
final state; a TM accepts a string as long as it enters a final state (one suffices).

Example: Construct a TM M1 that tests the membership of the language L1 = {w # w |w ∈
{0, 1}∗}. In other words, design a M1 such that M1(w) = accept if and only if w ∈ L1.
Position of tape head is underlined:

50

S0, a = 0 010#010 S0, a = 0 xxx#xx0

S1 x10#010 S1 xxx#xx0

S2 x10#x10 S2 xxx#xxx
S3 x10#x10 S3 xxx#xxx
S4 x10#x10 S4 xxx#xxx
S0, a = 1 xx0#x10 S0 xxx#xxx
S1 xx0#x10 S5 xxx#xxx (accept)
S2 xx0#xx0

S3 xx0#xx0

S4 xx0#xx0

Formal Definition of a Turing Machine (7-tuple):

A TM is a 7-tuple M = (Q, Σ, Γ, δ, q0, qaccept, qreject), where Q, Σ, Γ are finite sets, and

1. Q is a set of states,

2. Σ is the input alphabet and a blank 6∈ Σ.

3. Γ is the tape alphabet, blank ∈ Γ, Σ ⊂ Γ.

4. δ : Q× Γ→ Q× Γ× {L, R} is the transition function,

5. q0 ∈ Q is the start state,

6. qaccept is the accept state (qa), and qreject is the reject state (qr).

Q: How does the TM M compute?

• M receives as input w = a1a2 . . . an ∈ Σ∗, ai ∈ Σ written on the leftmost squares of
the tape (rest of the tape contains blanks).

• The head starts on the leftmost square of the tape and the first blank encountered
signals the end of input.

• Once M starts, it proceeds according to δ. M stays on the leftmost square (of input)
even if δ indicates a left move (L) from that square.

• Computation continues until M cannot move; w is accepted if M enters qaccept. (M
may go on forever as long as δ is defined.)

51

8. Turing Machines

Example: Let’s revisit our TM M1 that tests the membership of the language L1 =

{w # w | w ∈ {0, 1}∗}.

S0 If symbol read is a 0 or 1, replace it by x and remember the symbol as a;
if the symbol is a # go to S5; else reject.
δ(S0, 0) = (S1(0), x, R), δ(S0, 1) = (S1(1), x, R), δ(S0, #) = (S5, #, R)

S1(a) Move right until a # is found; if no # is found before blank, reject.
δ(S1(a), 0) = (S1(a), 0, R), δ(S1(a), 1) = (S1(a), 1, R)
δ(S1(a), #) = (S2(a), #, R) // change state

S2(a) Move right until a 0 or 1 is found; if current symbol
is the same as a, replace if by x; else reject.
δ(S2(a), x) = (S2(a), x, R), δ(S2(0), 0) = (S3, x, L)
δ(S2(1), 1) = (S3, x, L) // change state

S3 Move left until a # is found.
δ(S3, a) = (S3, a, L), where a ∈ {0, 1, x}
δ(S3, #) = (S4, #, L) // change state

S4 Move left until an x is found and go to S0

δ(S4, a) = (S4, a, L), where a ∈ {0, 1}
δ(S4, x) = (S0, x, R) // change state

S5 Move right until a 0, 1, or blank is found; accept if current symbol
is a blank; reject if current symbol is 0 or 1.
δ(S5, a) = (S5, a, R), where a ∈ {0, 1, x} // stay in S5

δ(S5, blank) = (S0, blank, L) // accept

Formalizing TM Computation:

A configuration C of the TM M is a 3-tuple C = (u, q, v), where q ∈ Q, u, v ∈ Γ∗ is the
tape content and the head is pointing to the first symbol of v.

A configuration C1 yields a configuration C2 if the TM can (legally) go from C1 to C2 in
a single computation (step). Suppose a, b, c ∈ Σ; u, v ∈ Γ∗ and qi, qj ∈ Q.

1. uaqibv yields uacqjv, if δ(qi, b) = (qj, c, R).

2. uaqibv yields uqjacv, if δ(qi, b) = (qj, c, L).

3. Suppose head is at leftmost symbol of input – qibv yields qjcv if the transition is
left-moving, i.e., δ(qi, b) = (qj, c, L); qibv yields cqjv if the transition is right-moving,
i.e., δ(qi, b) = (qj, c, R).

4. Suppose head is at rightmost symbol of input – uaqi is equivalent to uaqib because
we assume blanks follow the part of the tape represented in the configuration.

52

Special Configurations:

• If the input of TM is w and the initial state is q0, then q0w is the start configuration.

• uaqacceptbv is an accepting configuration.

• uaqrejectbv is a rejecting configuration.

• uaqcv, where δ(q, c) is undefined, is also a rejecting configuration.

• Accepting and rejecting configurations are also called halting configurations.

A TM accepts the input w if a sequence of configurations C1, C2, . . . , Cn, exists such that

1. C1 is the start configuration, i.e., C1 = (ε, q0, w).

2. Each Ci yields Ci+1, i = 1, 2, . . . , n− 1.

3. Cn is an accepting configuration.

Let L(M) = {w ∈ Σ∗ |M accepts w}; the language L is Turing-recognizable if there is a
TM M that recognizes L.

Three possible cases for TM execution on input w: TM accepts w, TM rejects w, or TM
does not halt.

A TM that halts on all inputs is called a decider. A language L is called Turing-decidable
(or decidable) if some TM decides it.

Important Facts:

• Any regular language is Turing-decidable.

• Any CFL is Turing-decidable.

• Every decidable language is Turing-recognizable.

• Certain Turing-recognizable languages are not decidable (i.e., TM does not halt on
all inputs).

53

8. Turing Machines

A few high-level operations for TMs:

1. Determine if two strings are the same.

2. Compute the addition, subtraction, multiplication, division, power, log, etc. of num-
bers in unary form.

3. Shift a string to the right (or left).

4. Maintain a base-b counter.

Multi-tape TMs:

1. Each tape has its own head for reading/writing.

2. Initially the input is on tape 1 and the other tape(s) are blank.

3. Transition function allows for reading, writing, and moving the head on all tapes
simultaneously.

4. δ : Q× Γk → Q× Γk × {L, R}k, where k is the number of tapes.

5. δ(qi, a1, . . . , ak) = (qj, b1, . . . , bk, L, R, . . . , L) means that if the machine is in state qi
and heads 1 through k are reading symbols a1 through ak, the machine goes to state
qj, writes b1 through bk on tapes 1 through k, respectively, and moves each head to
the left (or right) as specified.

Theorem: Every multi-tape TM has an equivalent single tape TM.

Example: 3-tape TM to recognize L = {0a1b2c | c = bloga(b)c, a > 1, b > 0}. Note: b = ac
and ac ≤ b < ac+1.

• Tape 1: input tape.

• Tape 2: contains x.

• Tape 3: contains k, where x = ak+1; loop while x ≤ b.

54

M = “On w . . .”

1. Check if w ∈ 00+1+2∗; if not, reject.

2. Copy all 0’s on input tape to tape 2.

3. If number of 0’s on tape 2 exceeds number of 1s on input tape, go to Step 6.

4. Multiply number of 0’s on tape 2 by number of zeros on input tape, and keep result
on tape 2.

5. Add a symbol 2 to tape 3; go to Step 3.

6. If number of 2’s on tape 3 is same as the number of 2’s on input tape, accept;
otherwise, reject.

Example: Multi-tape to Single Tape (# is tape delimiter)

Demonstrations and Shorthand:

Turing showed how to compute e, π, and all real algebraic numbers, i.e., solutions to

anxn + an−1
n−1 · · ·+ a2x2 + a1x + a0 = 0,

and roots of Bessel functions.

The number of machine configurations and symbols could be rather large for the TMs
required so Turing developed a shorthand notation for computing (tabulating).

55

8. Turing Machines

Example: TM that computes the infinite sequence 0101010

Example: Let’s construct a TM to decide A = {02n | n ≥ o}. So A is the language of all
strings of 0’s that have a length of a power of 2.

M = ”on some input string w do . . . ”

1. Sweep left to right across the tape and cross off every other 0; if the number of 0’s
is odd, reject.

2. If in Step 1, the tape contained a single 0, accept.

3. Return head to the left-end of the tape.

4. Go to Step 1.

56

TM Execution:

1. Mark the first 0 by A: δ(q1, 0) = (q2, A, R).
Cross-off next 0 after A: δ(q2, 0) = (q3, x, R).
Pass 0’s at the odd positions and cross-off 0’s at the even positions: δ(q3, 0) =

(q4, 0, R), δ(q4, 0) = (q3, x, R).
Make sure x is invisible to {q2, q3, q4}: δ(q, x) = (q, x, R) for q ∈ {q2, q3, q4}.
If the number of 0’s is odd, reject: δ(q4, blank) = (qr, blank, R).

2. Accept for a single 0: δ(q2, blank) = (qa, blank, R).

3. Return head to the left-end of the tape: δ(q3, blank) = (q5, blank, L),
δ(q5, a) = (q5, a, L) for a ∈ {0, x}.

4. Go to Stage 1: δ(q5, A) = (q2, A, R).

Let’s draw a state diagram for this TM and designate qa and qr as the accept and reject
states, respectively.

57

8. Turing Machines

Finally, let’s generate all the machine configurations that would follow the starting con-
figuration q1 0 0 0 0. Would you expect the TM to accept the tape input?

58

9 Decidability

We have used languages to represent computational problems. A language is decidable
if there is an algorithm (i.e., a Turing decider) to decide it.

We will consider some languages that are decidable by algorithms.

1. Membership for DFA – test whether a particular FA accepts a given string (denoted
by ADFA). ADFA contains encodings of all DFA’s together with the strings that the
DFA’s accept, i.e.,

ADFA = {< B, w > | B is a DFA that accepts w}.

Testing whether DFA B accepts w is the same as testing whether <B,w> ∈ ADFA.
To show that a computational problem is decidable is to show that the encoding of
the problem is decidable.

Theorem: ADFA is a decidable language.

Proof. Construct a TM M that decides ADFA.
M = “On input <B,w>, where B is a DFA and w is a string:

(a) Simulate B on w.

(b) If simulation ends in accept state, M accepts; if simulation ends in a non-accept
state, M rejects. Note: w is finite and the simulation always ends.”

2. Acceptance for NFA – define

ANFA = {< B, w > | B is a NFA that accepts w}.

Theorem: ANFA is a decidable language.

Proof. Construct a TM N that decides ANFA.
Because M (in previous theorem) was designed to work with DFA’s, N first converts
its input NFA to a DFA.

N = “On input <B,w>, where B is a NFA and w is a string:

(a) Convert NFA B to DFA C.

59

9. Decidability

(b) Run TM M from previous theorem.
(c) 3. If M accepts, then N accepts; otherwise, N rejects.”

3. Emptiness Problem – Test if the language of a DFA is empty. Define

EDFA = {< A > | A is a DFA and L(A) = 0}.

Theorem: EDFA is a decidable language.

Proof. DFA A accepts some string if and only if it reaches a final state from the
start state and travelling along the edges of the DFA. Construct a TM say T that
marks the states of the DFA A using the δ function of A. We then use T to solve the
emptiness problem.

T = “On input <A>, where A is a DFA:

(a) Mark the start state of A.
(b) Repeat until no new states get marked:

i. Mark any state that has a transition coming into it from any state that is
already marked.

ii. If no final state is marked, T accepts; otherwise T rejects.”

4. Language Equality – For two DFA’s, A and B, is L(A) = L(B)?

EQDFA = {< A, B > | A, B are DFA′s and L(A) = L(B)}.

Recall that the symmetric difference L(C) = [L(A) ∩ L(B)] ∪ [L(A) ∩ L(B)] de-
fines what is unique to each of the languages L(A) and L(B). If L(C) = ∅, then
L(A) = L(B). Let’s draw a Venn diagram for L(C).

60

Theorem: EQDFA is a decidable language.

Proof. Construct a TM F as follows:
F = “On input <A,B>, where A and B are DFA’s:

(a) Construct DFA C that recognizes L(C), the symmetric difference of L(A) and
L(B).

(b) Run TM T from the previous theorem for EDFA on the input <C>.

(c) If T accepts, then F accepts; otherwise F rejects.”

Given any DFA A on Σ, can we decide if L(A) = Σ∗?

ALLDFA = {< A > | A is a DFA that recognizes Σ∗}.

Theorem: ALLDFA is a decidable language.

Proof. Construct a TM L that decides ALLDFA using the fact that L(A) is regular.
L = “On input <A>, where A is a DFA:

1. Construct DFA B that recognizes L(A) by swapping accept and unaccept states in
A.

2. Run our previous TM T that decides the emptiness of EDFA on B.

3. If T accepts, then L accepts; if T rejects, then L rejects.”

Q: Can we describe algorithms to test whether a CFG generates a particular string?

Start with testing whether the language generated by a CFG is empty.

ACFG = {< G, w > | G is a CFG that generates the string w}.

Theorem: ACFG is a decidable language.

61

9. Decidability

Proof. (Draft) Go through all the derivations generated by G checking whether one of
them is a derivation of w. But there are infinitely-many derivations?

If G does not generate w, the algorithm does not halt; so we could only produce a
recognizer not a decider.

Q: How can we redesign the recognizer into a decider and only process a finite number
of derivations?

Note: If G is a CFG in CNF then for any w ∈ L(G), where |w| = n, exactly 2n− 1 steps
are required for any derivation of w.

Theorem: ACFG is a decidable language.

Proof. (Revised) Construct the TM S that decides ACFG. S=“On input <G,w>, where G
is a CFG and w is a string:

1. Convert G to an equivalent grammar in CNF.

2. List all derivations using 2n− 1 steps, where n = len(w); if n = 0, list all derivations
in 1 step.

3. If any derivations produce w, S accepts; otherwise S rejects.”

Emptiness Problem for CFG’s

ECFG = {< G > | G is a CFG and L(G) = 0}.

Theorem: ECFG is a decidable language.

To test whether L(G) is empty, we need to test whether the G can generate a string of
terminals. Moreover, can each variable generate a string of terminals?

We need an algorithm (i.e., TM) to cross off terminals and the variables whose grammar
rules have right-hand sides comprised of those terminals.

Proof. Construct the TM R= “On input <G>, where G is a CFG:

1. Mark all terminal symbols of G.

2. Repeat until no new variable gets marked:
Mark any variable A where G has a rule A→ u1u2 · · · uk
and each symbol u1, u2, . . ., uk has already been marked.

62

3. If the start symbol of G is not marked, R accepts; otherwise R rejects.”

Theorem: Every CFL is decidable.

Proof. Let G be a CFG for A, i.e. L(G) = A.
Design a TM MG that decides A by building a copy of G into MG.
MG= “On input w:

1. Run TM S from the ACFG proof on the input <G,w>.

2. 2. If S accepts, then MG accepts; otherwise MG rejects.”

Lemma: Class of CF languages is NOT closed under ∩.

Let’s construct a language using the intersection that is not CF.

Lemma: Class of CF languages is NOT closed under complementation.

Let’s construct a language using complementation that is not CF.

63

9. Decidability

CFL Equality Problem:

EQCFG = {< G, H > | G, H are CFGs and L(G) = L(H)}

Can’t use symmetric difference now since CFLs are NOT closed under intersection and
complementation.

Theorem: EQCFG is not a decidable language.

Proof. (By Contradiction) Suppose EQCFG is decidable and construct a decider M for

ALLCFG = {< G > | G is a CFG and L(G) = Σ∗}.

Then, M= “On input <G>:

1. Construct a CFG H such that L(H) = Σ∗.

2. Run the decider for EQCFG on <G,H>.

3. If the decider accepts, then M accepts; otherwise M rejects.”

So, M decides ALLCFG assuming a decider for EQCFG exists. But ALLCFG can be shown
to be undecidable. This is a reducibility argument that we will revisit later.

Overall Methodology (for proving that a language is decidable):

• Understand relationship between languages.

• Transform relationship into an expression using closure operators on decidable
languages.

• Design a TM that constructs language expressed.

• Run TM that decides that language.

64

10 Halting Problem

Membership problem–does a TM accept a given input string?

ATM = {< M, w > |M is a TM and M accepts w}.

The language ATM is not decidable but ATM is Turing-recognizable.
Let’s construct a recognizer for ATM:
U = “On input <M,w>, where M is a TM and w is a string:

1. Simulate M on the input w.

2. If M ever enters its accept state, U accepts; if M ever enters its reject state, U rejects
Note: U loops on the input <M,w>, if M loops on w and this is why U does not
decide ATM.”

If the algorithm has some way to determine that M was not halting on w, it could reject.
This is known as the Halting Problem.

The TM U (named for “universal TM”) was proposed by Alan Turing and played an
important role in the development of future stored-program computers.

Undecidability–how can we prove a language is undecidable.?

For TM membership, we can exploit George Cantor’s diagonalization technique (1873);
he wanted to measure the size of infinite sets (i.e., count the number of elements in the
set).

However, such a counting approach would not halt.

Examples of infinite sets:

• Set of strings over {0, 1}

• N – set of natural numbers

• E – set of all even natural numbers

Cantor’s solution for comparing infinite sets: two infinite sets have the same size if their
elements can be paired.

65

10. Halting Problem

Two sets A and B have the same size if there is a correspondence f : A→ B.
We say f is 1-to-1 if it never maps two different elements of A into the same element of
B, i.e., f (a) 6= f (b) whenever a 6= b.
We say f is onto if it hits every element of B, i.e., for all b ∈ B, there exists a ∈ A such
that f (a) = b.
We conclude that f is a correspondence if it is both 1-to-1 and onto.

Example: Let N = {1, 2, 3, . . .} and E = {2, 4, 6, . . .}. Cantor showed that N and E have
the same size by defining the correspondence f : N→ E by f (n) = 2n.

A set is countable if either it is finite or it has the same size as N.

Let Q be the set of positive rational numbers, i.e., Q = {m/n |m, n ∈N}.
Is Q the same size as N? Let’s see if we can define a correspondence between Q and N:

These are countable (infinite) sets: N×N, Nk for any k, Σ∗, and any subset of a count-
able set.

Example of an uncountable set: R–the set of real numbers.

66

Theorem: R is uncountable.

Proof. Suppose a correspondence f : N → R exists and deduce a contradiction that f
cannot be a correspondence, i.e., construct x ∈ R that cannot be the image of any n ∈N.
Assuming the correspondence f exists, we can list all real numbers. Now, construct
x ∈ (0, 1) as follows . . .

1. Let x = 0.d1 d2 d3 d4 · · · with an infinite number of decimals constructed by the
following rule: for all i ∈N choose di to be different from ith digit of f (i).

2. Then, for all i ∈ N, x 6= f (i). So x does not belong to our list of all real numbers
and f is not a correspondence (contradiction).

Some languages are not decidable or even Turing-recognizable.

There are countable many TMs but an uncountable number of languages; each TM can
recognize a single language and there are many more languages than TMs so what can
we conclude?

That there will be languages that are NOT recognized by an TM (these are not T-
recognizable).

Examples of uncountable sets: R1 = (0, 1), infinite-length binary strings (B), integer
functions F = { f | f : N→ {0, 1}}, power set P(N), and the set of all formal languages
L = {L | L ⊆ Σ∗}.

Suppose Σ = {0, 1} and A is the language of all strings starting with 0 over Σ.
Then, Σ∗ = {ε, 0, 1, 00, 01, 11, 000, 001, 010, 011, . . .} and A = {0, 00, 01, 000, 001, 010, 011, . . .}.
Define the characteristic function

χA = 0101101111 . . .

The function χA runs over each element of Σ∗ and returns a 1 if that element is an ele-
ment of A; otherwise, it returns a 0.

67

10. Halting Problem

Theorem: Set of all formal languages L = {L | L ⊆ Σ∗} is uncountable.

Proof. Construct a correspondence B → L. Since each Σ∗ is countable, we can write
Σ∗ = {s1, s2, s3, . . .}. Each language A ∈ L has a unique infinite binary sequence χA ∈ B

constructed as follows: the ith bit of χA is such that χA(i) = 1 if si ∈ A and χA(i) = 0
if si 6∈ A. So, χA is the characteristic function of A in Σ∗ and the function f : L → B,
where f (A) = χA, is 1-to-1 and onto, i.e., a correspondence. Since B is uncountable, L

must be uncountable.

Q: Can we construct a Turing-unrecognizable language?

Recall that ATM is a Turing undecidable language but it is Turing-recognizable (TR).
Constructing a TR language relies on the fact that if both a language and its complement
are TR, then the language is decidable. Hence, for any undecidable language, either the
language or its complement is not TR.

Theorem: ATM = {< M, w > |M is a TM and M accepts w} is undecidable.

Proof. Assume ATM is decidable and suppose H is a decider of ATM. On input < M, w >,
where M is a TM and w is a string, H halts and accepts if M accepts w. Similarly, H halts
and rejects if M fails to accept w.

Now, construct a new TM D that uses H as a subroutine. That is, D calls H to determine
what M does when its input is w =< M >.

So if M accepts < M >, then D(< M >) rejects and if M rejects < M > then D(< M >)

accepts (opposite of what H outputs). Now, run D on < D >, then D(< D >) returns
accept if D doesn’t accept < D > and D(< D >) returns reject if D doesn’t reject < D >.
See the problem?

68

Let’s use diagonalization to arrive at the same impossibility. Start by listing all TMs run-
ning on TMs as input . . .

< M1 > < M2 > < M3 > < M4 >

M1 accept accept
M2 accept accept accept accept
M3

M4 accept accept

(Entry (i, j) is accept if Mi accepts < Mj >)

Now run H . . .

< M1 > < M2 > < M3 > < M4 >

M1 accept reject accept reject
M2 accept accept accept accept
M3 reject reject reject reject
M4 accept accept reject reject

(Entry (i, j) is value of H on < Mi < Mj >>)

Now consider the result of running H when D is present . . . (blue entries are arbitrary).

< M1 > < M2 > < M3 > < M4 > < D >

M1 accept reject accept reject accept
M2 accept accept accept accept accept
M3 reject reject reject reject reject
M4 accept accept reject reject accept
D reject reject accept accept ?

(D returns the opposite of < Mi < Mi >>)

69

10. Halting Problem

Summary
Let’s draw a Venn diagram that summarizes all the sets of languages we have studied in
this course: regular, context-free, decidable, and Turing-recognizable.

70

11 Reducibility

• Reduction is a terminating process.

• When Problem A is reduced to Problem B, solving problem A cannot be harder
than the sum of reduction and solving Problem B; the solution to Problem B should
yield the solution to Problem A.

• If Problem A is reduced to Problem B that is decidable, then Problem A is decidable;
the solution to Problem B solves Problem A in a finite number of steps.

• If Problem A is undecidable and is reducible to Problem B, then B is undecidable.

Example: Problem A (measuring area of a circle) reduces to Problem B (measuring r, the
circle’s radius) that reduces to Problem C (performing πr2).

Example: Problem A (proving a set is uncountable) reduces to Problem B (establishing a
correspondence between the set and the set of reals, R).

Methodology:

To prove that a Problem P is undecidable by reduction:

1. Find a Problem Q known to be undecidable.

2. Assume P is decidable by a TM MP.

3. Use TM MP to construct a TM MQ that solves Q: encode every instance q of Problem
Q as an instance qp of Problem P. Use MP to solve qp.

Since it is known that Q is undecidable, MQ cannot exist so MP cannot exist and P is
undecidable.

This methodology works for not Turing-recognizable also.

Undecidable Problems:

Problem P: the halting problem, HALTTM is the problem of determining whether a TM
halts on input w:

HALTTM = {< M, w > |M is a TM and TM halts on w}.

71

11. Reducibility

A (known) undecidable Problem Q: we have established the un-decidability of

ATM = {< M, w > |M is a TM and M accepts w}.

We can use the the undecidability of ATM to show that HALTTM is undecidable by
reducing ATM to HALTTM.

Theorem: HALTTM is undecidable.

Proof. Assume that TM R decides HALTTM and use R to construct TM S that decides
ATM. S=“On input < M, w >, i.e., an encoding of M and w: Run TM R on < M, w >.
If R rejects, i.e., M loops on w, S rejects.
If R accepts, i.e., M halts on w, simulate M on w until it halts.
If M has accepted, S accepts; if M has rejected, S rejects.”

So ATM has been reduced to HALTTM.

Q: Can a TM recognize a language recognized by a simpler computational model, such
as a regular language?

REGULARTM is the problem of testing whether a given TM has an equivalent finite
automaton:

REGULARTM = {< M > |M is a TM and L(M) is regular}.

Theorem: REGULARTM is undecidable.
(Proof construction):

We seek to reduce REGULARTM to ATM. That is, we assume that REGULARTM is de-
cidable by a TM R and use this assumption to construct the TM S that decides ATM. For
S: take input < M, w > and modify M so that the resulting TM M2 recognizes a regular
language if and only if M accepts w.

M2 recognizes the non-regular language {0n1n | n ≥ 0}, if M does not accept w; M2 rec-
ognizes the regular language Σ∗ if M accepts w.

72

Constructing M2: M2 accepts (automatically) all strings in {0n1n | n ≥ 0}. In addition, if
M accepts w, then M2 accepts all other strings.

Theorem: REGULARTM is undecidable.

Proof. Let R be a TM that decides REGULARTM. Construct the TM S that decides ATM:

S=“On input < M, w > where M is a TM and w is a string:

1. Construct the code of TM M2 as follows: M2 = “On input x, a) if x = 0n1n for some
n ≥ 0, accept; b) if x 6= 0n1n, run M on w and if M accepts w, then accept.”

2. Run R on < M2 >.

3. If R accepts, then S accepts; if R rejects, then S rejects.”

So, if R decides REGULARTM, then S decides ATM; but ATM is undecidable so S cannot
exist. Therefore, R cannot exist and REGULARTM must be undecidable.

Theorem: (Rice’s) Let P be any property about TMs and express P as a language, i.e., P
is the language of TMs having property P.

Assume that P satisfies the following two properties:

• For any TMs, M1 and M2, where L(M1) = L(M2) we have < M1 >∈ P if and only
if < M2 >∈ P, i.e., membership of a TM M in P depends only on the language of
M.

• There exist TMs M1 and M2, where < M1 >∈ P and < M2 > 6∈ P, i.e., P is not
trivial – holds for some TMs but not for all.

Then, P is undecidable.

Proof. Suppose P is a decidable language satisfying both conditions of Rice’s Theorem.
Let TP be a TM that decides P. Without loss of generality, assume that T0 with L(T0) = ∅
(always rejects) and that < T0 > 6∈ P. (We would proceed with P instead of P if < T0 >∈
P.)

73

11. Reducibility

Since P is not trivial, there exists a TM M1 with < M1 >∈ P. Now, construct the following
TM X. X = “On input < M, w >:

1. Construct a TM Mw that accepts input x if and only if M accepts w and M1 accepts
x.

2. Run TP on < Mw >; if TP accepts, X accepts; otherwise X rejects.”

Now, if w ∈ ATM and L(Mw) = L(M1), then < Mw > should be accepted by TP since
< M1 >∈ P.

But if w 6∈ ATM and L(Mw) = ∅ = L(T0), then < Mw > should be rejected by TP

according to our assumption that < T0 > 6∈ P.

So, we have shown that w ∈ ATM if and only if < M1 >∈ P. But, ATM is undecid-
able and therefore P is also undecidable.

Example: Prove that Lx = {< M > |M is a TM that writes an x on some cell of the tape
when started on a blank} is undecidable.

Assume Lx is decidable and let R be a TM that decides it. Then define
S = “On input < M, w >, where M is a TM and w is an input string do:

1. Construct a new TM Mw such that on input y, we substitute X for x everywhere
in < M > and w, creating < M′, w′ >.

2. Run M′ on the input w′ so that if M′ rejects, then Mw rejects; similarly if M′

accepts w′, then print x on the tape and have Mw accept.

3. Now, run R on < M, w > so that if R accepts, then S accepts; similarly if R
rejects then S rejects.”

74

Example: Prove that LUT = {< M > |M is a TM such that L(M) is any string containing “UT”}
is undecidable.

Assume LUT is decidable and let R be a TM that decides it. Then define
S = “On input < M, w >, where M is a TM and w is an input string do:

1. Construct a new TM Mw with input string x.

2. Erase the input string x and replace it with the constant string w.

3. Simulate TM M on w.

Now, run R on < Mw > and if R accepts, then S accepts; similarly if R rejects, then
S rejects.”

Example: The famous 3x + 1 problem is based on the following function f (x) over the
natural numbers x:

f (x) =
{

3x + 1, for odd x,
x/2, for even x.

If you start with an integer x and iterate f , you obtain a sequence

x, f (x), f (f (x)), . . . ,

and stop if you ever hit 1. For example, if x = 17, you would get the sequence

17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1 .

Extensive computations have shown that every starting point between 1 and a large pos-
itive integer yields a sequence that ends in 1. But, the question of whether all positive
starting integers yields a sequence terminating at 1 is unsolved.

75

11. Reducibility

Suppose that ATM were decidable by a TM H. Let’s use H to describe a TM that would
be guaranteed to answer the 3x + 1 problem.

Define a TM S on input < n >, where n is a natural number. Let S = “On input
< n >, where n is a natural number, run the 3x + 1 procedure starting at n and
accept if and when 1 is reached. If n never reaches 1, then S will not halt.”

Now, define the TM T on input < n > to use TM H to determine whether or
not S accepts < n >. If S accepts, then T accepts; T will halt and reject if S does not
accept.

76

12 Complexity

In analyzing TMA, the time to decide the language A depends on the number of steps
that TMA moves – normally depends on several parameters.

In general,

1. The running time of an algorithm is a function of the length of the string that
represents the input.

2. Worst-case-analysis is the longest running time of all inputs of the same length.

3. Average-case-analysis is the average of all running times of inputs of the same
length.

Let M be a deterministic TM that halts on all inputs. The running time or time complex-
ity of M is a function f : N → N, where f (n) is the maximum number of steps that M
uses on any input of length n.

If f (n) is the running time of M we say that M runs in time f (n) and that M is an
f (n) time TM, where n is the length of the input.

Usually we estimate running time of an algorithm (exact time may be too complicated to
determine).

Asymptotic analysis – determine running time of algorithms on large inputs; consider
only the highest order term of running time expression (dominates values of other terms
on large inputs).
Example:

f (n) = 6n3 + 2n2 + 10n + 100

We say that f is asymptotically at most n3, and write f (n) = O(n3).

Let f and g be functions, f , g : N → R. We say that f (n) = O(g(n)), if positive integers
c and n0 exist such that for all n ≥ n0, f (n) ≤ cg(n). We say that g(n) is an asymptotic
upper bound for f (n) with the suppression of constant factors.

In practice, most functions f will have an obvious highest order term h(n) so that

77

12. Complexity

f (n) = O(h(n)).

For logarithms, logb(n) = log2(n)/ log2(b) so that base really doesn’t matter.
For example, if

f2(n) = 3n log2(n) + 5n log2(log2(n)) + 2

we would say f2(n) = O(n log n).

Big-Oh Expressions:

1. If f (n) = O(n2) + n, then f (n) = O(n2); but if g(n) = O(n2), we cannot conclude
that f (n) = O(g(n)).

2. If f (n) = 2O(n), then f (n) = O(2cn) for some constant c.

3. If f (n) = 2O(log n) then f (n) is an upper bound for nc, constant c. Why?

4. nO(1) representes the value nc for constant c.

5. Polynomial bounds have the form nc, for constant c and exponential bounds have
the form acnδ

, for a > 1, and c, δ > 0.

Small-Oh notation:
A function is asymptotically less than another function; let f , g : N → R, we say that
f (n) = o(g(n)) if

lim
n→∞
{ f (n)/g(n)} = 0 .

This means that for any real number c > 0, there exists an integer (size) n0 such that
f (n) < cg(n) for all n ≥ n0.
Examples:

Function Small-Oh√
n o(n)

n o(n log(log(n)))
n log(log(n)) o(n log(n))

n log(n) o(n2)

n2 o(n3)

Note: f (n) is never o(f (n)). In words, Big-Oh means “grows no faster than” and Small-
Oh means “grows strictly slower than”.

78

Analyzing Algorithms:

Consider a TM algorithm M1 that decides A = {0k1k | k ≥ 0}. M1 = “On input, string w:

1. Scan across tape and reject if 0 is found to the right of a 1.

2. Repeat as long as both 0’s and 1’s remain on the tape: scan across tape, crossing off
a single 0 and a single 1.

3. If 0’s remain after 1’s have been crossed off or if 1’s still remain after all 0s have been
crossed off, reject. Otherwise, if neither 0’s nor 1’s remain on the tape, accept.”

Let’s analyze the complexity of M1 for input length n:

Stage 1: Machine scans n steps to verify 0+1+ and then moves another n steps to reposition
the head. [2n steps = O(n)]

Stage 2: Each scan in this stage is performed in O(n) time. Because each scan crosses off a 0
and a 1, at most n/2 scans occur; so total number of steps is (n/2)×O(n) = O(n2).

Stage 3: Machine makes a single scan to decide whether to accept or reject. [O(n) steps]

So, the running time for M1 is O(n) + O(n2) + O(n) = O(n2).

Let t : N → N be a function. The time complexity class TIME (t(n)) is the collection of
all languages that are decidable by an O(t(n)) time TM.

A = {0n1n | n ≥ 0} is decided by M1 in O(n2) steps so A ∈ TIME (n2).

Q: Is there a TM that decides A asymptotically faster? Is A ∈ TIME (t(n)) for t(n) =

O(n2)?

Note: One can cross two 0’s and two 1’s in Stage 2 which cuts the number of scans
by half but the overall running time does not change.

79

12. Complexity

Consider M2 = TIME(n log n) TM, where M2 = “On input string w:

1. Scan across tape and reject if 0 is found to the right of a 1.

2. Repeat as long as some 0’s and some 1’s remain on the tape:

(a) Scan across the tape checking whether total number of 0’s and 1’s remaining
on tape is even or odd; if odd reject.

(b) Scan again across the tape, crossing off every other 0 starting with the first 0
and then crossing off every other 1 starting with the first 1.

3. If no 0’s and no 1’s remain on tape, accept; otherwise reject.”

.” Analysis:

Stage 1: O(n) steps

Stage 2: (1 + log2 n)×O(n) = O(n log2 n) steps

Stage 3: O(n) steps

So, asymptotically A ∈ TIME (n log2 n).

Q: What would the time complexity be using two tapes?

Consider a two-tape M3 that decides A in linear time, i.e. O(n) time.
M3 = “On input string w on tape 1:

1. Scan across tape 1 and reject if a 0 found to right of a 1.

2. Scan across 0’s on tape 1 until the first 1 is found and at the same time copy those
0’s to tape 2.

3. Scan across 1’s on tape 1 until the end of the tape is reached. For each 1 read on
tape 1, cross off a 0 on tape 2. If all 0’s are crossed off before all the 1’s are read,
reject.

4. If all 0’s have been crossed off, accept; if any 0’s remain, reject.”

80

Summary:

TM Tapes Time Complexity
M1 1 O(n2)

M2 1 O(n log n)
M3 2 O(n)

Class P:
Languages that are decidable in polynomial time on a deterministic (singe-tape) TM.

P =
⋃
k

TIME(nk)

P is invariant for all models of computation that are polynomially equivalent to the
deterministic (single-tape) TM.

P roughly corresponds to the class of problems that are realistically solvable by com-
puters.

A verifier for a language A is an algorithm V where A = {w | V accepts < w, c >

for some string c}.

The running time of a verifier is measured in terms of the length of w. A polynomial-time
verifier runs in polynomial time in length of w.

We say that a language A is polynomial verifiable if it has a polynomial-time verifier
(PTV).

Theorem: Every CFL is a member of P.

Languages that have polynomial-time verifiers (PTV) belong to Class NP.

NP is defined as “nondeterministic polynomial time”.

Hamiltonian Path Problem ∈ NP (i.e., take two specified nodes in a directed graph and
trace a path from one to the other that goes through each node of the graph exactly once).

81

12. Complexity

P versus NP:

• Problems in P are quickly solvable such as multiplication and sorting.

• Problems in NP are quickly checkable such as factoring and finding max cliques
(largest complete subgraph) in a graph.

• Finding the max clique of an undirected graph having hundreds of vertices could
take centuries of computer time.

• If P = NP, then the searching needed to solve NP problems would be eliminated.

P = NP?

This remains an unsolved problem in theoretical computer science. If there is a polynomial-
time algorithm for certain problems in NP, then all problems in NP would be polynomial-
time solvable. Such problems are called NP-complete. Problems referred to as NP-hard
(see Venn diagram below) are not in NP but there is some NP-complete problem that is
reducible to the NP-hard problem in polynomial time. The complexity of NP-complete
problems relates to the entire class of NP problems. So, in one sense, problems in NP are
linked to each other.

A language B is NP-complete if 1) B ∈ NP, and 2) every A ∈ NP is polynomial-time
reducible to B.

82

Dynamic Programming:

In order to prove that every CFL is a member of P , we can deploy a dynamic pro-
gramming algorithm to determine whether each variable in a CFG G generates each
substring of a given string w = w1 w2 · · · wn in the language generated by G.

The algorithm enters the solution to each subproblem into an n × n table. For i ≤ j,
the (i,j) entry of the table contains the collection of variables that generate the substring
wi wi+1 · · ·wj. For i > j, the table entries are unused.

Let G be a CFG in CNF that generates the CFL L. Assume that S is the start variable and
that the algorithm (using dynamic programming) will handle the special case when w=ε

in step (stage) 1.

D = ”On input w = w1 w2 · · · wn :

For i = 1 to n:
For each variable A:

Test whether A→ wi is a rule.
If so, place A in Table(i,j).

For l = 2 to n: // l is length of substring
For i = 1 to n− l + 1: // i is start pos. of substring

Let j = i + l − 1 // j is end pos. of substring
For k = i to j− 1: // k is the split position

For each rule A→ BC
If Table(i,k) contains B and
Table(k + 1,j) contains C, put A in Table (i,j).

If S is in Table (1,n), accept; else reject.”

83

12. Complexity

Let v be the number of variables in G and assume it is independent of n (size of the input
string). Assume the CFG G has r rules.

Algorithm D runs in O(n3) time so that the CFL L belongs to TIME (n3) which is in
P .

Example CFG : S→ RT, R→ TR | a, T → TR | b

Let’s generate the Table of Algorithm D for the following cases of w : baab, bbab, abaa.

1 2 3 4

1 T R, T R, T S
2 R n/a n/a
3 R S
4 T

G: S→ RT, R→ TR | a, T → TR | b

Table 1: w = baab

1 2 3 4

1 T n/a R, T S
2 T R, T S
3 R S
4 T

G: S→ RT, R→ TR | a, T → TR | b

Table 2: w = bbab

84

Satisfiability:

A Boolean formula is satisfiable if some assignments of 1 and 0 (true and false) to its
variables makes the formula evaluate to 1.

φ = (x̄ ∧ y) ∨ (x ∧ z̄)

with x = 0, y = 1, and z = 0 makes φ evaluate to 1.

The satisfiability problem (or SAT) is to test whether a Boolean formula is satisfied,
i.e., SAT = {< φ > | φ is a satisfiable Boolean formula}; SAT is NP-complete.

Cook-Levin Theorem: SAT ∈ P if and only if P = NP.

3SAT:

A clause is several literals (Boolean variables) connected with ∨’s such as

x1 ∨ x̄2 ∨ x̄3 ∨ x4 .

A Boolean formula is in conjunctive normal form (called a cnf-formula) if it comprises
several clauses connected by ∧’s. A 3cnf-formula has clauses with three literals in each
clause such as

(x1 ∨ x̄6 ∨ x̄7) ∧ (x1 ∨ x̄2 ∨ x̄3) ∧ (x1 ∨ x̄4 ∨ x̄5) .

We define the language 3SAT by {< φ > | φ is a satisfiable 3cnf-formula}.

It can be shown that all languages in NP can be reduced to 3SAT in polynomial time,
i.e., 3SAT is NP-complete.

To reduce (in polynomial time) 3SAT to a given language, it is helpful to identify struc-
tures in the language that can simulate variables and clauses in Boolean formulas.

Such structures are called gadgets.

85

13. Lambda-Calculus

13 Lambda-Calculus

λ-calculus was developed by A. Church in the early 1930s; he used it in his proof of the
undecidable E-problem that Turing also addressed.

Recall the differences between procedural/imperative programming languages (C,C++,
Java, C#) and functional programming languages (Lisp, APL, Haskell, Schema, F#).

Church’s first paper on λ-calculus was published in the Annals of Mathematics in April,
1932.

Notation:

• Expression: x2 + 5x + 7

• Function notation: f (x) = x2 + 5x + 7 or f (y) = y2 + 5y + 7

• Functional value: f (4) = 42 + 5(4) + 7 = 43

• Keeping independent variable, we can write:

[y2 + 5y + 7](4)

• For more than one variable, order matters:

[y2 + 5y + 18x− 2xy2 + 7](4, 5)

• Church’s notation for a function of one variable: λx[M]

Example: λx[x2 + 5x + 7]

• A function F(x) with a value A for the variable x can be denoted {F}(A)

• If the function has an independent variable x, the proper notation would be {λx[M]}(A);
Example: {λx[x2 + 5x + 7]}(A)

• Function of two independent variables: {λxλy[y2 + 5y + 18x− 2xy2 + 7]}(A, B)

• λxλy[M](A, B) can also be written as λxλy.M(A, B)

86

Rules of Conversion:

• You can change a bounded variable (x → y), if the new variable does not collide
with the formula.

• For {λx[M]}(N), if N has no expression in x you can substitute N for all occur-
rences of x in M.

• “conv” means by conversion to indicate that one formula has been converted into
another equivalent formula:

λy[y2 + 5y + 7](A) conv A2 + 5A + 7

• “→” means is an abbreviation for:

1→ λ f x. f (x) or 1→ {λ f x[f (x)]} or 1→ λab.a(b)

• S→ λρ f x. f (ρ(f , x))

2→ S(1) or “2 succeeds 1”

• Can write S(1) = {λρ f x. f (ρ(f , x))}(λab.a(b)) so that first bound variable (ρ) is
replaced by the expression for 1.

Let’s derive the succession of 1, i.e., start with S(1) = {λρ f x. f (ρ(f , x))}(λab.a(b))

87

13. Lambda-Calculus

So, 2→ S(1) conv and 3→ S(2) conv .

Addition:

• Church’s student Cole Kleene developed more operators like “+” circa 1934:

+→ λρσ f x.ρ(f , σ(f , x))

• Let’s evaluate 2 + 3 with 2→ λab.a(a(b)) and 3→ λcd.c(c(c(d)).

{+}(2, 3) is . . .

Substitute 2 for ρ and 3 for σ.

Now, substitute f for c and x for d.

Finally, substitute f for a and f (f (f (x))) for b.

88

Multiplication:

• Operator definition: × → λρσx.ρ(σ(x))

• Let’s evaluate 2× 3 with 2→ λab.a(a(b)) and 3→ λcd.c(c(c(d)).

{×}(2, 3) is . . .

Substitute 2 for ρ and 3 for σ.

89

13. Lambda-Calculus

Substitute x for c.

Substitute λd.x(x(x(d))) for a.

Now, substitute b for d.

Finally, substitute x(x(x(b))) for d.

90

Church proposed that all λ-definable functions are all the effectively calculable functions;
Kleene studied relationships between recursive functions and λ-definable functions.

Equivalence to Turing’s work on E-Problem provided in the Appendix of Turing’s 1936

paper.

λ-functions in Python:

Python supports the creation of anonymous functions (not bound to a name) at runtime
– called lambda functions although not exactly the same as the one’s we just considered
(and provided in Lisp).

>>> (lambda x : x**2)(3)

>>> 9

Typically used to encapsulate specific, non-reusable code without having to write several
one-line functions:

processFunc = collapse and

(lambda s: \ ".join(s.split())) or (lambda s: s)

If collapse is true, processFunc(string) will collapse whitespace or return the string
unchanged.

Also used to create jump tables, i.e., lists or dictionaries of actions to be performed on
demand:

>>> L = [lambda x : x**2, lambda x : x**3,

lambda x : x**4]

>>> for f in L: print(f(3))

>>> 9

27

81

>>> print(L[0](11))

>>> 121

91

	Theory of Computation, Introduction
	Finite Automata
	Regular Languages
	Nondeterminism
	Closure Properties
	DFA/NFA Equivalence

	Nonregular Languages
	Pumping Lemma
	Pumping Lemma (for Regular Languages) Proofs

	Context-Free Languages
	Design Techniques
	Chomsky Normal Form

	Pushdown Automata
	Pumping Lemma (CFLs)
	Turing Machines
	Decidability
	Halting Problem
	Reducibility
	Complexity
	Lambda-Calculus

