CS312

Homework #6 Answer Key

1 CNF Step 1

Perform step one of converting the following CFG into CNF by adding a new start state S. $V = \{A, B\}, \Sigma = \{0, 1, \epsilon\}, S = A, R =$

$$A \to BAB \mid B \mid 1 \mid \epsilon$$
$$B \to 00 \mid \epsilon$$

Answer

 $V = \{S, A, B\}, \Sigma = \{0, 1\}, S = S, R =$

$$\begin{split} S \to A \\ A \to BAB \mid B \mid 1 \mid \epsilon \\ B \to 00 \mid \epsilon \end{split}$$

2 CNF Step 2

Perform step two of converting the following CFG's into CNF by removing ϵ rules. No points off if $C \to C$ rule left in for part (a).

2.a

$$V = \{S, A, B, C\}, \Sigma = \{a, b, c\}, S = S, R =$$

$$S \rightarrow A$$

$$A \rightarrow AaB$$

$$B \rightarrow b \mid C \mid \epsilon$$

$$C \rightarrow CC \mid c \mid \epsilon$$

Answer

$$V = \{S, A, B, C\}, \Sigma = \{a, b, c\}, S = S, R =$$

$$S \rightarrow A$$

$$A \rightarrow AaB \mid Aa$$

$$B \rightarrow b \mid C$$

$$C \rightarrow CC \mid c$$

$\mathbf{2.b}$

$$V = \{S, A, B\}, \Sigma = \{a, b, \epsilon\}, S = S, R =$$

$$S \rightarrow A$$

$$A \rightarrow AA \mid AB \mid B \mid a$$

$$B \rightarrow BB \mid b \mid \epsilon$$

Answer

$$V = \{S, A, B\}, \Sigma = \{a, b\}, S = S, R =$$

$$S \rightarrow A \mid \epsilon$$
$$A \rightarrow AA \mid AB \mid B \mid a$$
$$B \rightarrow BB \mid b$$

3 CNF Step 3

Perform step three of converting the following CFG's into CNF by removing unit rules. No points off if $A \rightarrow BC$ rule left in for part (b).

3.a

$$V = \{S, A, B\}, \Sigma = \{a, b\}, S = S, R =$$

$$S \rightarrow A$$

$$A \rightarrow AA \mid AB \mid A \mid B \mid aB$$

$$B \rightarrow BB \mid Bb \mid b$$

Answer

$$V = \{S, A, B\}, \Sigma = \{a, b\}, S = S, R =$$

$$S \rightarrow AA \mid AB \mid BB \mid Bb \mid b \mid aB$$

$$A \rightarrow AA \mid AB \mid BB \mid Bb \mid b \mid aB$$

$$B \rightarrow BB \mid Bb \mid b$$

3.b

 $V = \{S, A, B, C, D\}, \, \Sigma = \{a, b, c\}, \, S = S, \, R =$ $S \rightarrow A \mid \epsilon$

$$A \rightarrow BC$$

$$B \rightarrow BD \mid bb$$

$$C \rightarrow CD \mid cc$$

$$D \rightarrow B \mid C$$

Answer

$$V = \{S, B, C, D\}, \Sigma = \{a, b, c\}, S = S, R =$$

$$S \rightarrow BC \mid \epsilon$$

$$B \rightarrow BD \mid bb$$

$$C \rightarrow CD \mid cc$$

$$D \rightarrow BD \mid bb \mid CD \mid cc$$

4 CNF Step 4

Perform step four of converting the following CFG into CNF by removing remaining rules.

$$V = \{S, A, B\}, \Sigma = \{a, b\}, S = S, R =$$

$$S \rightarrow AAB \mid aBb \mid ABB \mid Ab$$

$$A \rightarrow AAB \mid aBb \mid ABB \mid Ab$$

$$B \rightarrow BB \mid Bb \mid b$$

Sample Answer

$$V = \{S, A, B\}, \Sigma = \{a, b\}, S = S, R =$$

$$S \rightarrow AE \mid FC \mid EB \mid AC$$

$$A \rightarrow AE \mid FC \mid EB \mid AC$$

$$B \rightarrow BB \mid BC \mid b$$

$$C \rightarrow b$$

$$D \rightarrow a$$

$$E \rightarrow AB$$

$$F \rightarrow DB$$

5 CFG to PDA Conversion

Using the technique that was covered in class, convert the following CFG to a PDA:

 $V = \{A, B, C, D\}, \Sigma_{\epsilon} = \{x, \sqrt{,} +, (,)\} \cup \{\epsilon\}, S = A, R = A \rightarrow B \mid C \mid x$ $B \rightarrow \sqrt{C} \mid \sqrt{A}$ $C \rightarrow (D) \mid (A)$ $D \rightarrow A + A$

