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1 Introduction to Sets: Notation and Operations

Definition: A collection of objects is a set. The objects in a set are elements.
Sets can be denoted by symbols or by using a set of curly braces where
multiple elements listed inside are separated by commas.

Example 1: The set containing the integers 1, 2, and −10 is denoted as
{1, 2,−10}. The following is also a set: {cat, 3, x,�}. The integers form a
set. A set with no elements is still a set, known as the empty set. A set can
contain other sets such as {{1}, {1, 2}, {2}}.

Next, several commonly used sets, set notation, and some set operations
are provided.

Notation for commonly used sets

• N - the natural numbers, {0,1,2,3,...}

• Z - the integers, {..., -3,-2,-1,0,1,2,3...}

• Q - the rational numbers

• R - the real numbers

• C - the complex numbers

• ∅ - the set containing no elements, the empty set

Set notation and operations: (Assume A and B are sets.)

• x ∈ A - the element x is in the set A

• x /∈ A - the element x is NOT in the set A

• | A | - the cardinality of set A; i.e. how many elements are in a set

• A = B - The set A contains exactly the same elements as the set B
and vice versa

• A ⊆ B - the set A is a subset of set B and may be equal to the set B
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1. Introduction to Sets: Notation and Operations

• A ⊂ B - the set A is a proper subset of set B but cannot be equal to
the set B

• A ∩ B - the set formed from the intersection of sets A and B which are
elements found in both sets A AND B.

• A ∪ B - the set formed from the union of sets A and B which are
elements in sets A OR B. Here, OR is ’inclusive,’ meaning elements
in the union can be in both sets.

• Ac or Ā - The set formed from the converse (or complement) of the
set A (i.e. NOT A, elements not found in A.)

• (A − B) - read as ”A minus B” the set formed by the elements that
are only in set A

• A
⊕

B - the elements in sets A and B, but not in both A and B (also
denoted as A XOR B)

Example 2: The following set notation is read as the set of all elements x in
the integers such that x is greater than or equal to 0 and less than 4:

{x ∈ Z|0 ≤ x < 4}

and is equivalent to the set given by the following notation:

{0, 1, 2, 3}

Definition: Given a set A, the Power Set of A is the set containing every
subset of the set A, and is denoted by P(A). (Note that ∅ is a subset of A
and therefore an element of P(A).)

Definition: The of Cartesian/Cross Product of two sets A and B, denoted
A× B, is the set

A× B = {(a, b) | a ∈ A, b ∈ B}.

Definition: A Universe of Discourse (or simply Universe) is the entire set
of objects within which we are working for a particular context. It is usu-
ally denoted as, U. For example, the set of integers can be defined as the
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universe of discourse, U = Z, for a particular problem and then all other
objects that are not integers would be excluded from the discussion or
discourse that follows.

Definition: A Venn Diagram is a graphical construct of a universe of dis-
course in which a particular set is visualized using 1-3 usually overlap-
ping circles each representing an individual set. For instance, let the rect-
angular box below represent some universe of discourse in which we will
represent the sets A, B, and C as overlapping circles:
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1. Introduction to Sets: Notation and Operations

In Chapter 4, to facilitate working with more complicated statements in-
volving sets, we will be more mathematically precise about some of the
definitions presented here; however, the following exercises are intended
to give you practice with the basic concepts of these definitions.

Chapter 1 Problems

1. Let A = {0, 2, 3, 6} , B = {1, 2, 3}, C = {1, 5, 9}, D = {2, 6, 8, 9}, and E
= {2, 2, 8}.
Determine the following:

(a) A ∩ C

(b) D ∩ ( B ∪ A )

(c) E \ ( C ∩ D )

2. Are the following statements true? Provide explanations for your de-
cisions.

(a) A ∩ B = B ∩ A

(b) A ∪ B = B ∪ A

(c) A - B = B - A

6



(d) A
⊕

B = B
⊕

A

3. Let A, B, and C be any sets. Draw a Venn Diagram for the set A ∪ ( B
∩ C )

4. Construct the power set of each the following sets.

(a) A = {1,2,5,9}

(b) B = {{1,2}, {3,4},{5,6}}

7



1. Introduction to Sets: Notation and Operations

5. Let A = {4,5,7} and B = {6,7}. for each item, construct the set or find
the quantity for each expression below.

(a) A × B

(b) B × A

(c) B2

(d) | A × B |

(e) | B × A |

8



2 Combinatorics

This chapter gives an introduction to combinatorics, the study of count-
ing! Combinatorics is essential to areas such as probability, coding, cryp-
tography, and graph theory.

2.1 The Rule of Sum

• Task 1 can be done m distinct ways.

• Task 2 can be done n distinct ways.

• Assumption: Tasks cannot be done simultaneously so that either task
can be done in one of m + n ways.

Example 1: In Hodge’s Library, there are 40 Sociology books available
and 50 Anthropology books. How many books could Joe select from if he
wants to learn about Sociology or Anthropology?

Answer: A student could select among 40 + 50 = 90 books to learn about
one or the other topic.

Example 2: Suppose a computer science instructor has seven different
books each on the 3 programming languages: C++, Java, and Perl. Then,
the instructor could recommend any one of twenty-one books to a student
to learn concepts in programming. But now suppose that same instructor
has two colleagues: one has three books on the analysis of algorithms and
the other colleague has five books on the analysis of algorithms. Suppose
n is the maximum number of different books on the topic of the analysis
of algorithms that the instructor could borrow from them. What bounds
can be imposed on n?
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2. Combinatorics

2.2 The Rule of Products

The rule of products is used on problems which have two stages:

• Stage 1 has m possible outcomes.

• Stage 2 has n possible outcomes.

• You then connect every Stage 1 event to every Stage 2 event so that the
total procedure can be carried out in m× n ways.

Example 1: A clothing manufacturer has put out a mix-and-match collec-
tion consisting of two blouses, two pairs of pants, a skirt, and a blazer.
How many outfits can you make?

Answer: You can make 2 tops × 3 bottoms × 1 coat(s) = 6.

Example 2: Suppose license plates must have the form AB1234, that is,
two letters followed by four integers (including zero).

a. Assume no letter or digit can be repeated. How many different li-
cense plates can be printed?
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2.3. Permutations

b. Now, allow repetitions of letters and digits. How many different li-
cense plates can be printed?

c. Assuming repetitions, how many plates will have only vowels and
even digits (zero is considered even)?

2.3 Permutations

A permutation of a set of objects is a particular linear arrangement of the
objects. If there was a reshuffling of the objects (still arranged linearly) this
would correspond to different permutations of the objects. Thus, when
counting the possible number of permutations, we are concerned with
counting how many different linear arrangements of objects there are and
thus order matters with permutations.

Example 1: Suppose there are 10 students in a class and for a class photo
we want to select five students for a particular row. How many arrange-
ments are possible?

Answer:

10︸︷︷︸
1st

× 9︸︷︷︸
2nd

× 8︸︷︷︸
3rd

× 7︸︷︷︸
4th

× 6︸︷︷︸
5th

= 30, 240

More formally, we define permutation as follows:

Definition: Given n distinct objects, any linear arrangements of the n ob-
jects is called a permutation.

Permutations often involve the use of factorials, which are denoted with
an exclamation point (!) and are defined as follows:
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2. Combinatorics

Factorial:
0! = 1
n! = n(n− 1)(n− 2) · · · 3× 2× 1, for n ≥ 1

With this in place, we can see that given n distinct objects, the number of
permutations of size r for the n objects is

P(n, r) = n× (n− 1)× (n− 2)× ...× (n− r + 1) =
n!

(n− r)!

Example 2: Given the eight-letter word COMPUTER,

a) How many permutations of letters are possible?

8!
(8− 8)!

= 8!

b) How many 5 letter permutations are possible?

8!
(8− 5)!

=
8!
3!

= 6, 720

c) Suppose repetitions are allowed and you allot sequences of 12 letters,
how many permutations are possible?

812 ' 6.872× 1010
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2.3. Permutations

Permutations deal specifically with a set of distinct objects. However, we
can consider linear arrangements of any set of objects even if some of the
objects are the same as each other; i.e. there are objects in the set that
are indistinguishable from one another. Thus, suppose we have n objects of
which there are

• n1 indistinguishable objects of type 1,

• n2 indistinguishable objects of type 2,
...

• nr indistinguishable objects of type r,

so that n1 + n2 + ... + nr =
r

∑
i=1

ni = n.

Then, there are
n!

n1!× n2!× ...× nr!
linear arrangements of the n objects.

Example 3: How many unique permutations of letters in MISSISSIPPI can
you create?

Example 4: Determine the number of staircase paths in the xy plane from
the point (2, 1) to the point (7, 4) in which each path has individual steps
going one unit to the right (R) or one unit up (U)? Hint: Every path will
require 5 horizontal (R) moves and 3 vertical (U) moves. Why?

13



2. Combinatorics

Nonlinear Arrangement

Example 5: Suppose there are six people {A,B,C,D,E,F} seated around
a circular table. How many different circular arrangements are possible if
arrangements are considered the same if they differ only by a rotational
shift?

Note that each circular arrangement corresponds to 6 distinct linear ar-
rangements. These 6 arrangements are equivalent because without a be-
ginning or end they all represent the same seating pattern.
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2.4. Combinations

A B C D E F
B C D E F A
C D E F A B
D E F A B C
E F A B C D
F A B C D E

So, 6 × (number of circular arrangements of A,B,C,D,E,F)
= number of linear arrangements of A,B,C,D,E,F = 6!

Therefore, the number of circular arrangements of A,B,C,D,E,F =
6!
6

=

120.

2.4 Combinations

Unlike the situation with permutations, in some cases, a different ordering
of n distinct objects does not constitute a different entity. For example,
consider the following two situations:

(a) 3 colors are to be selected from a given set of colors and each used to
form a 3-striped flag;

(b) 3 colors are to be selected to mix together into a new color.

For (a) above, one could make multiple distinct flags based on the order-
ing of the 3 colored stripes and so order matters, making this a permuta-
tion scenario. However, in (b) it does not matter the order in which the 3

colors were chosen; so the number of ways to select the 3 colors in (b) does
not depend on the order in which they were chosen. This latter situation
requires something related to a permutation but for which order does not
distinguish different selections and this is where combinations come in.

Aside: don’t be confused by the use of the word combination used in this con-
text with the use for instance, regarding a locker combination... a locker combo is
actually a permutation because the ordering of the numbers in the combo matters!
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2. Combinatorics

Definition: Given n distinct objects, each selection of r of these objects
without regard to order corresponds to r! permutations of size r from n
objects. Thus, the number of combinations of r objects selected from n
distinct objects without regard to order is defined and denoted by

C(n, r) =
(

n
r

)
=

P(n, r)
r!

=
n!

r!× (n− r)!
, for 0 ≤ r ≤ n .

It is also common to say ”n choose r” when referring to combinations,
C(n, r).

Note these basic facts about combinations:

• For all n ≥ 0: C(n, 0) = C(n, n) = 1

• For n ≥ 1, C(n, 1) = C(n, n− 1) = n.

• If 0 ≤ n < r, then C(n, r) =
(

n
r

)
= 0.

Example 1: A student is taking a history exam containing 10 essay ques-
tions of which they must answer 7. How many ways are there for the
student to select 7 of the questions to answer if:

a) no other requirements are specified on how the 7 questions are cho-
sen. (note: order is not important)?

b) the student must answer 3 questions from the first 5 questions and 4

from the last 5 questions?
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2.4. Combinations

c) at least 3 questions must be selected from the first 5 questions?

Example 2: Sometimes the same problem can be viewed in terms of ar-
rangements or combinations. Suppose a gym teacher wants to create 4

volleyball teams of 9 girls from a freshmen class of 36 girls. How many
ways can the teacher select the 4 teams say A,B,C,D?

Answer using combinations whereby you form the A team first by select-
ing 9 girls and then form the remaining teams in succession:
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2. Combinatorics

Answer using arrangements whereby you line the students up in order
and distribute 9 A’s, 9 B’s, 9 C’s, and 9 D’s across the 36 positions:

2.5 Summation Properties

Important properties of summation:

a) indices can vary:
7

∑
i=3

ai =
7

∑
j=3

aj.

b) zero index effect:
4

∑
i=1

i2 =
4

∑
k=0

k2.

c) index shifts:
100

∑
i=11

i3 =
101

∑
j=12

(j− 1)3 =
99

∑
k=10

(k + 1)3.

d) scalar factors:
10

∑
i=7

2i = 2
10

∑
i=7

i.

e) repeated scalar:
5

∑
i=1

a = 5a.

Example 1:(
5
3

)(
5
4

)
+

(
5
4

)(
5
3

)
+

(
5
5

)(
5
2

)
=

5

∑
i=3

(
5
i

)(
5

7− i

)
=

4

∑
j=2

(
5

7− j

)(
5
j

)
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2.5. Summation Properties

Example 2: Suppose we have an alphabet of only three characters: 0,1,2.
Define the string x by x = x1x2 · · · xn, where each xi is either 0, 1, or
2. Now define the function wt by wt(x) = x1 + x2 + · · · + xn so that
wt(12) = 3, wt(22) = 4, and wt(101) = 2. Among the 310 strings of
length 10 suppose we want to determine the number of strings that have
even weight. The problem can be broken down into 6 cases representing
the non-overlapping ways to form strings having even weight. Assume
zero is an even number:

Case 1: x has no 1’s.

Case 2: x has exactly two 1’s.

Case 3: x has exactly four 1’s.

Case 4: x has exactly six 1’s.
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2. Combinatorics

Case 5: x has exactly eight 1’s.

Case 6: x has exactly ten 1’s.

Since each case is independent of the others, we use the rule of sum to
find the total number of ways to form strings that have even weight.
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2.6. Binomial Theorem

2.6 Binomial Theorem

The Binomial Theorem: Given variables x and y and a positive integer n,
the repeated product of the term (x + y) with itself (i.e. (x + y)n) can be
expanded as the following sum:

(x + y)n =

(
n
0

)
x0yn +

(
n
1

)
x1yn−1 +

(
n
2

)
x2yn−2 + ...

+

(
n

n− 1

)
xn−1y1 +

(
n
n

)
xny0

=
n

∑
k=0

(
n
k

)
xkyn−k.

Corollary to the Binomial Theorem: Given a positive integer n,

a)
(

n
0

)
+

(
n
1

)
+

(
n
2

)
+ ... +

(
n
n

)
= 2n

b)
(

n
0

)
−
(

n
1

)
+

(
n
2

)
− ... + (−1)n

(
n
n

)
= 0.

Fun fact: For n, r with 0 ≤ r ≤ n,
(

n
r

)
=

(
n

n− r

)
. That is, without

regard to order, the number of ways to choose r objects from n (n choose
r) is the same as the number of ways to choose the amount of objects
remaining (i.e., n− r) from n objects (n choose n− r). This may be a helpful
perspective in some problems.

2.7 Combinations with Repetition

Consider the scenario in which one wants to select r objects from n dis-
tinct objects without regard to order and with repetition. For example, let’s
assume we have a set A with n elements and we can select r objects from
A, where each object can be selected more than once. For instance, the
combinations of letters a, b, c, d taken three at a time with repetition are:
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2. Combinatorics

aaa, aab, aac, aad, abb, abc, abd, acc, acd, add, bbb, bbc, bbd, bcc, bcd, bdd,
ccc, ccd, cdd, ddd.

Note: Two combinations with repetition are considered identical if they
have the same elements repeated the same number of time, regardless of
their order (e.g., aab and baa).

Combinations with Repetition The number of combinations of r objects
chosen from n distinct objects with repetition. is defined as:

C(n + r− 1, r)

Fun Fact: The number of combinations of n objects taken r at a time with
repetition is equivalent to the number of ways r identical objects can be
distributed among n distinct containers.

Example 1: Using the fun fact directly above, suppose you have n = 3
different (empty) milk containers and r = 7 quarts of milk that we can
measure with a one quart measuring cup. In how many ways can we dis-
tribute the milk among the three containers?

To answer this question, let x1, x2, x3 be the quarts of milk to put in
containers 1, 2, and 3, respectively. The number of possible distributions
of milk equals the number of non-negative integer solutions to x1 + x2 +

x3 = 7. Suppose we now use strokes or tick marks to represent a solution
such as x1 = 2, x2 = 1, and x3 = 4. That is, 2 + 1 + 4 is represented
by || + | + ||||. Hence, each possible solution could be thought of as an
arrangement of r = 7 strokes and (n− 1) = 2 plus signs. So, the number
of possible arrangements of the 9 symbols of which there are two types is
given by

9!/(7!× 2!) =
(

9
7

)
.

For any (n,r) pair, the resulting formula for counting combinations with
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2.7. Combinations with Repetition

repetitions is given by (
n + r− 1

r

)
=

(n + r− 1)!
r!(n− 1)!

.

Example 2: Suppose a message has 12 different symbols. In addition to 12

symbols, the transmitter also sends a total of 45 blank spaces between the
symbols, with at least 3 spaces between each pair of executable symbols.
Question: How many ways can the transmitter send a message?

Answer: For 12 different symbols there are 12! different arrangements and
for each arrangement there are 11 positions between the 12 symbols.

Let’s illustrate this below:

There are 3 spaces between consecutive pairs, so 33 of the 45 spaces are
automatically used to construct the message. This leaves 12 spaces to dis-
tribute (i.e., we have a selection problem). For 11 positions, we need to
select 12 spaces to insert.
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2. Combinatorics

Example 3: Consider the following C++ code fragment below:

for (i=0; i < 20; i++) {

for (j=0; j <= i; j++) {

for (k=0; k <= j; k++) {

cout << i*j+k; }}}

Question: How many times is the cout statement executed?

Example 4: Consider the following C++ code fragment below:

count=0;

for (i=0; i < n; i++) {

for (j=0; j <= i; j++) {

count++; }}

Question: How many times is the count++; statement executed?
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3 Logic and Proof Strategies

3.1 Propositions and Logical Operators

Definition (Proposition/Statement): A proposition or statement is a declar-
ative sentence (i.e., subject/verb/object) that is exclusively either true or
false (not both). We say that a proposition evaluates to either true or false or
has a truth value of true or false. (Note: A proposition can be a statement of
opinion but not a command or question.)

Are the following sentences propositions? If they are, state their truth
value. If they are not, explain why not.

1. Two plus five equals seven.

2. Two plus one equals eight.

3. No woman has ever been The Pope.

4. She is a defense lawyer.

5. That music is loud!

6. This proposition is false.

7. x3− 5y = 0

8. A ∩ B

We often denote propositions with letters such as p := “2 + 5 = 7′′ and
q := “5 > 7′′. Simple or primitive propositions such as these (i.e., one sub-
ject/one verb/one object) can be used to form compound propositions by
utilizing the words/phrases and, or (inclusive), exclusive or, not, if ... then
... , and ... if and only if ... to combine several primitive propositions into
a single more complicated proposition. These connector words are called
logical connectives and are denoted with symbols.

Let p and q be propositions. The following are new compound proposi-
tions comprised of p and q using logical connectives as illustrated below
and followed by descriptive defintiions of each:
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¬p p ∧ q p ∨ q p Y q p→ q p↔ q
NOT AND OR XOR IMPLIES IFF

“not p” “p and q” “p or q” “p xor q” “if p then q” “p if and only if q”

Definition (NOT, NEGATION, ¬): The negation of a proposition p de-
noted ¬p and read “not p” is defined as a proposition that has the oppo-
site truth value of p.

Definition (AND, ∧): For two propositions p and q, the proposition formed
as p∧ q is true only when both p is true and q is true; and false otherwise.

Definition (OR, ∨, inclusive): For two propositions p and q, the propo-
sition formed as p ∨ q is true when p or q or both are true; and false
otherwise. (i.e. it is only false when both p and q are false.)

Definition (XOR, Exclusive Or, Y): For two propositions p and q, the
proposition formed as p Y q is true when only one of p or q is true but not
when both are true; and false otherwise.

Definition (implication, →): For two propositions p and q, the proposi-
tion formed as p → q (“if p, then q.”) is only false when p evaluates as
true but q evaluates false; but is true otherwise. It is also known as a con-
ditional proposition, since the conclusion q is conditional on p. Note: the
truth values of an implication based on the truth values of p and q are not
the same as the validity or truth of the if-then claim itself as a proven or
disproven argument.

Definition (if and only if,↔): For two propositions p and q, the proposi-
tion formed as p↔ q is defined as p→ q and q→ p (i.e. (if p then q) and
(if q then p)). It is true only when both p→ q and q→ p evaluate to true.
It is also known as a biconditional proposition and usually read as “p if and
only if q.”
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3.2. Truth Tables

Suppose we have the following (primitive) propositions p := “It’s hot in
Topeka.” q := “It’s sunny in Topeka.” and r := ”It’s cloudy in Topeka.”.

1 Write out ¬p?

2 Write out p ∧ q?

3 Write out p ∨ q?

4 Represent the following proposition with logical connectives: If it’s
sunny in Topeka, then it’s not cloudy in Topeka.

5 Represent the following proposition with logical connectives: It’s not
over 100 F in Topeka if and only if it’s not sunny but cloudy in Topeka.

3.2 Truth Tables

Denote truth values as True = 1 and False = 0. We can determine the truth
value of a compound proposition by examining it under various permu-
tations of truth values for the individual propositions that comprise the
more complex proposition.

A truth table is a compact way to display the possible permutations of
truth values, 0 and 1, for n individual statements in rows of the table.

Example 1: A truth table is illustrated below for n = 2 individual propo-
sitions p and q, to examine the compound propositions ¬p and p ∨ q :
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p q ¬p p ∨ q
0 0

0 1

1 0

1 1

Below is a truth table displaying the truth values for propositions, p and
q, joined by the logical connectives:

p q p ∧ q p ∨ q p Y q p→ q p↔ q
0 0 0 0 0 1 1

0 1 0 1 1 1 0

1 0 0 1 1 0 0

1 1 1 1 0 1 1

Example 2: (Simple Truth Table): Suppose p and q are propositions de-
fined as follows: p: The old granola is bland. q: The fresh fruit is exquisite.

How could we make the proposition p ∨ q and how would it’s truth table
be filled out?

Example 3: (More Complex Truth Table): Suppose p, q and r are proposi-
tions defined as follows:
p: Combinatorics is a required course for Sophomores.
q: Margaret Mitchell wrote Gone With the Wind. r: 2 + 3 = 5.

Let’s generate a truth table for the above components and the compound
statement:
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“Margaret Mitchell wrote Gone With the Wind and if 2 + 3 6= 5, then com-
binatorics is a required class for sophomores.”

Definition (Tautology): A compound proposition is referred to as a Tau-
tology if it is true for all truth value assignments.

Definition (Contradiction): A compound proposition is referred to as a
Contradiction if it is false for all truth value assignments.

p ¬p p ∨ ¬p p ∧ ¬p T0 F0

“Tautology” “Contradiction”
0 1 1 0 1 0

1 0 1 0 1 0

Definition (Contrapositive): The contrapositive of an implication p → q is
defined as the implication proposition ¬q→ ¬p. (This will be shown later
to be equivalent to the original implication!)

Definition (Converse): The converse of an implication p→ q is defined as
the implication q→ p.
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Definition (Inverse): The inverse of an implication p→ q is defined as the
implication ¬p→ ¬q.

Example 4: Given propositions p and q, generate the truth values in the
following table for (p∨ q)∨ (¬p) as well as (p∧ q)∧ (¬p). Hint: Form in-
termediate steps within the table for simpler propositions that comprise
the original more complex proposition.

p q ¬p ¬q p ∨ q p ∧ q (p ∨ q) ∨ (¬p) (p ∧ q) ∧ (¬p)
0 0

0 1

1 0

1 1

What can be said about the statement (p ∨ q) ∨ (¬p)?

What can be said about the statement (p ∧ q) ∧ (¬p)?

Example 5: Create a truth table for [p→ (q→ r)]→ [(p→ q)→ (p→ r)]

p q r p→ (q→ r) (p→ q)→ (p→ r) [p→ (q→ r)]→ [(p→ q)→ (p→ r)]
0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

What can be said about [p→ (q→ r)]→ [(p→ q)→ (p→ r)]?
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3.3. Logical Equivalence

3.3 Logical Equivalence

Definition (Logical Implication): If S1 and S2 are statements such that
S1 → S2 is a tautology, then we say that S1 logically implies S2 and write
S1 ⇒ S2.

Definition (Logical Equivalence): Statements S1 and S2 are defined as
logically equivalent when S1 ↔ S2 is a tautology. Logically equivalent
statements, S1 and S2, are denoted as S1 ⇔ S2.

Note: (S1 ⇒ S2) ∧ (S2 ⇒ S1) is the same as S1 ⇔ S2. Logical equivalence
is also bi-directional, this means that (S1 ⇔ S2)⇔ (S2 ⇔ S1).

Truth Tables and Logical Equivalence Logically equivalent statements
are considered to be interchangeable and thus, have identical truth values.

Example 1: For statements p and q, show that ¬p∨ q is logically equivalent
to p→ q using a truth table.

p q ¬p ¬p ∨ q p→ q
0 0

0 1

1 0

1 1

Some other properties of logical equivalences/implications:

1. If p ⇔ q, then p ↔ q is a tautology and p → q and q → p are also
tautologies.

2. If p 6⇒ q, then p→ q is not a tautology.

Definition (Dual): If S is a statement with no operations other than nega-
tion, ∨ and ∧, then the dual of S (Sd) is a statement obtained from S by
replacing ∧ with ∨ and vice-versa.

For example, if S is (p∧¬q) ∨ (r∧T0), then Sd is .
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Theorem (Principle of Duality): Assume S and T are statements with no
other operations other than negation (¬), ∧ and ∨. If S⇔ T then Sd ⇔ Td.

Substitution Rules:

1. Suppose P is in compound statement that is also a tautology. If p is a
primitive statement that appears in big P and we replace every occur-
rence of p by another statement q, the resulting compound statement
(P1) is also a tautology.

2. Suppose P is a compound statement and little p is a statement ap-
pearing in P. Let q be a statement such q ⇔ p. If we replace one or
more occurrences of p by q, then the resulting compound statement
P1 is logically equivalent to P, i.e., P1 ⇔ P.

Example 2: Apply the first rule above to the following compound state-
ment:

P : ¬(p ∨ q)⇔ (¬p ∧ ¬q) ,

and note that P is a tautology. Replace p by (r ∧ s) for all occurrences of
little p to obtain a new tautology P1.

Example 3: For an application of the second (substitution) rule, suppose
P := (p→ q)⇔ r and let p̂ := p→ q. Now suppose p̂⇔ q̂ and we define
P1 := q̂↔ r. Can we conclude that P1 ⇔ P?
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3.3. Logical Equivalence

Example 4: Consider a switching network of wires and switches connect-
ing two terminals T1 and T2. Assume when a switch is open (0), i.e., there
is no current flow through it. Similarly when a switch is closed (1), there
is current flow through it. Below are common switch topologies used in
practice:

a. A simple switch:

b. Two switches in parallel (p ∨ q):

c. Two switches in series (p ∧ q):

Example 5: Going off of the previous example, create a logic statement
for the 9-switch network in (a) below and use our laws of logic to deduce
that it is (logically) equivalent to the 4-switch network shown in (b).

a. Nine switches:
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b. Four switches

3.4 The Laws of Logic

Certain logical implications and equivalences show up quite often and are
now introduced as the ”Laws of Logic” and ”Rules of Inference.”

Laws of Logic. Let p, q, and r be primitive (not compound) propositions
and denote a tautology by T0 and a contradiction by F0. The following are
important Laws of Logic. Think about how you would prove that these
laws are true for all p, q, and r.
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a. Double Negation (Involution):
¬(¬)p⇔

b. DeMorgan’s Laws:
¬(p ∨ q)⇔
¬(p ∧ q)⇔

c. Commutative Laws:
p ∨ q⇔
q ∧ p⇔

d. Associative Laws:
p ∨ (q ∨ r)⇔
p ∧ (q ∧ r)⇔

e. Distributive Laws:
p ∨ (q ∧ r)⇔
p ∧ (q ∨ r)⇔

f. Idempotent Laws:
p ∨ p⇔
p ∧ p⇔

g. Identity Law:
p ∨ (F0)⇔
p ∧ (T0)⇔

h. Inverse Laws:
p ∨ ¬p⇔
p ∧ ¬p⇔

i. Domination Laws:
p ∨ (T0)⇔
p ∧ (F0)⇔

j. Absorption Laws:
p ∨ (p ∧ q)⇔
p ∧ (p ∨ q)⇔
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k. Conditional Law:
p→ q⇔

l. Biconditional Equivalences:
(p↔ q)⇔ (p→ q)∧ (q→ p)⇔ (¬p ∧ ¬q)

m. Contrapositive:
(p→ q)⇔

3.5 Valid Arguments and the Rules of Inference

For the compound statement (assuming n is a positive integer)

(P1 ∧ P2 ∧ · · · ∧ Pn)→ q,

we call P1, P2, . . ., Pn the premises of the argument and q the conclusion
of the argument.

Example 1: Suppose we have the following primitive statements:

p := “Roger studies”
q := “Roger plays raquetball”
r := “Roger passes COSC 311.”

Consider the following three premises

P1: If Roger studies, he will pass the class. (p→ r)
P2: If Roger doesn’t play raquettball, he will study. (¬q→ p)
P3: Roger failed the class. (¬r)

for the argument (P1 ∧ P2 ∧ P3) → q. Complete the truth table for the
argument

[(p→ r) ∧ (¬q→ p) ∧ ¬r]→ q ,

and show that it is in fact a tautology.

36



3.5. Valid Arguments and the Rules of Inference

p q r p→ r ¬q→ p ¬r q (P1 ∧ P2 ∧ P3)→ q
0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Rules of Inference Now we present some very common and useful valid
arguments known as Rules of Inference.

1. Rule of Detachment:
(p→ q) ∧ p⇒

2. Law of Syllogism (Chain Rule):
(p→ q) ∧ (q→ r)⇒

3. Indirect Reasoning (Modus Tollens, The Method of Denying):
(p→ q) ∧ (¬q)⇒

4. Disjunctive Amplification (or Addition):
p⇒

5. Conjunctive Simplification:
(p ∧ q)⇒
(p ∧ q)⇒

6. Disjunctive Simplification (or Disjunctive Syllogism):
(p ∨ q) ∧ ¬p⇒
(p ∨ q) ∧ ¬q⇒

7. Rule of Contradiction:
¬p→ F0 ⇒ p

Now we will look at some of these rules and show how to prove that
they are valid arguments (i.e., implication statements that are tautolo-
gies). First note the following notation convention.
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Recall that the Law of Syllogism is given by the tautology

[(p→ q) ∧ (q→ r)]→ (p→ r) .

We can write the premises and conclusion of this implication using a
tabular form:

p→ q premise 1

q→ r premise 2

∴ p→ r conclusion

Example 2: Rules of Inference displayed in tabular form.

a. The Indirect Reasoning tautology (or The Method of Denying, Modus
Tollens) in tabular form is given by:

p→ q
¬q

∴ ¬p

b. The Rule of Disjunctive Syllogism tautology in tabular form is given
by:

p ∨ q
¬p

∴ q

Example 3: As seen above in the list of Inference Rules, the Rule of De-
tachment (or Modus Ponens) is given by

[p ∧ (p→ q)]→ q .

In tabular form we can write this tautology as

p premise 1

p→ q premise 2

∴ q conclusion

Example 4: Let’s use two approaches to prove that the following is a valid
argument using the rules of inference and/or laws of logic:
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p
p→ ¬q
¬q→ ¬r

∴ ¬r

Approach 1 Approach 2

Step Reason(s) Step Reason(s)

1. Premise 1. Premise

2. Premise 2. Premise

3. Law of Syllogism 3. Rule of Detachment

4. Premise 4. Premise

5. Rule of Detachment 5. Rule of Detachment

Example 5: Prove that the following implication is a valid argument using
the rules of inference and/or laws of logic. Provide reason(s) for each step
in the proof.

p→ q
¬q
¬r

∴ ¬(p ∨ r)
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Proof by Contradiction. The Rule of Conjunction given below together
with the Rule of Contradiction are both tautologies having the respective
tabular forms below. With these, we form the method of proof known as
Proof by Contradiction. This is a very powerful and useful method, but it
must be set up carefully!

Conjunction Contradiction
p
q

∴ p ∧ q
¬p→ F0

∴ p

Using the above rules of inference, a Proof by Contradiction (or Reductio
Absurdum) to establish the tautology

(P1 ∧ P2 ∧ · · · ∧ Pn)→ q

is achieved by establishing the logically equivalent tautology:

(P1 ∧ P2 ∧ · · · ∧ Pn ∧ ¬q)→ F0

Example 6: Note that the method of proof by contradiction as outlined
above is claiming that the following biconditional statement is a tautology:

(p→ q)↔ [(p ∧ ¬q)→ F0]

Let’s verify the tautology using a truth table. Recall that↔ means “if and
only if.”
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Example 7: Let’s take a look at an example where we will construct a logi-
cal argument and then prove that the argument is in fact a tautology. First,
we will prove it directly, assuming the premises as usual and reasoning
to the conclusion, p, directly. Then, we will prove it another way by using
the method of a proof by contradiction. Which proof will you like best??

Suppose a band can play rock music (p) and refreshments can be delivered
on time (q). But suppose a New Year’s Eve party is cancelled (r) and the
host Alicia is angry (s) and must make refunds to her guests (t). If the
band does not play rock music or refreshments do not arrive on time
(¬p ∨ ¬q), then the party has to be cancelled making Alicia angry (r ∧
s). Also, if the party is cancelled (r) then refunds have to be made to
the guests (t). It turns out that refunds did not have to be made (¬t), so
we conclude that the band played rock music (p). In tabular form, the
resulting argument can be expressed as:

(¬p ∨ ¬q)→ (r ∧ s)
r → t
¬t

∴ p

Let’s complete the following proof that validates the argument above.

Step Reason(s)
1. r → t Premise
2. ¬t Premise
3. ¬r Modus Tollens

4. Disjunctive Addition

5. DeMorgan’s Law
6. (¬p ∨ ¬q)→ (r ∧ s) Premise

7. Modus Tollens

8. DeMorgan’s Law & Double Negation

9. ∴ p Conjuctive Simplification
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3.6 Propositions on a Set and Quantifiers

Definition (Open Proposition): An open proposition (i) has one or more
variables belonging to a specified set of some universe, (ii) is not a propo-
sition on its own, and (iii) becomes a proposition when the variables are
replaced by values.
Example 1: Let U = Z and let x ∈ Z. Consider the following open propo-
sition

p(x) :=“The number x + 2 is an even integer”.

Clearly, in the universe of integers p(5) :=”The number 7 is an even inte-
ger.” is false; and ¬p(7) :=”The number 7 is not an even integer.” is true.

We often use the following quantifiers and respective notation for open
propositions, where U is some universe and x ∈ U:

a. Existential Quantifier–“there exists x” or ∃x; also: ”there exists x ∈
U” or ∃x ∈ U;

b. Universal Quantifier–“for all x” or ∀x; also: “for all x ∈ U” or ∀x ∈
U.

Example 2: Suppose you have the following four open statements with
x ∈ R:

p(x): x ≥ 0 r(x): x2− 3x− 4 = 0
q(x): x2 ≥ 0 s(x): x2− 3 > 0

Mark each statement below as either true or false.

∃x [p(x) ∧ r(x)]
∀x [p(x)→ q(x)]
∀x [q(x)→ s(x)]
∀x [r(x) ∨ s(x)]
∀x [r(x)→ p(x)]

Example 3: Now change the universe to Z in Example 2 above and deter-
mine if your answers change.
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Example 4: Consider the following C++ code statement below:

for (n=0; n < 20; n++) {A[n]=n*n-n;}

Assuming all elements of the array A are integers, determine whether each
open statement below is true or false?

∀ n (A[n] ≥ 0)
∃ n (A[n+1] = 2∗A[n])
∀ n [ (0 ≤ n < 20)→ (A[n] < A[n+1]) ]
∀ m ∀ n [ ( m 6= n)→ (A[m] 6= A[n]) ]

Logical Equivalence versus Logical Implication for Open Propositions:

If ∀x[p(x)⇔ q(x)], then p(a)↔ q(a) for all a in a given universe.

If p(a)→ q(a) for every a in a given universe, then ∀x[p(x)⇒ q(x)].

Definition: Consider the quantified open proposition: ∀x[p(x) → q(x)],
where p(x) and q(x) are open statements over some set in a universe, U.

1. The contrapositive of ∀x[p(x)→ q(x)] is ∀x[¬q(x)→ ¬p(x)].

2. The converse of ∀x[p(x)→ q(x)] is ∀x[q(x)→ p(x)].

3. The inverse of ∀x[p(x)→ q(x)] is ∀x[¬p(x)→ ¬q(x)].

Example 5: Suppose you have the following four open statements:

p(x): |x| > 3 ¬p(x): |x| ≤ 3
q(x): x > 3 ¬q(x): x ≤ 3

Mark each statement below as either true or false.

∀x [p(x)→ q(x)]
∀x [q(x)→ p(x)] (converse)
∀x [¬p(x)→ ¬q(x)] (inverse)
∀x [¬q(x)→ ¬p(x)] (contrapositive)
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Logical Implications and Equivalences for Open Statements (One Variable):

Assume p(x) and q(x) are open statements on the same prescribed uni-
verse of values. The following are important logical implications/equivalences
involving quantifiers:

1. ∀xp(x)⇒ ∃xp(x)

2. ∃x [p(x) ∧ q(x)]⇒ ∃x p(x) ∧ ∃x q(x)

3. ∃x [p(x) ∨ q(x)]⇔ [∃x p(x) ∨ ∃x q(x)]

4. ∀x [p(x) ∧ q(x)]⇔ [∀x p(x) ∧ ∀x q(x)]

5. ∀x p(x) ∨ ∀x q(x)⇒ ∀x [p(x) ∨ q(x)]

Negating Quantifiers: Assume p(x) is an open statement on a prescribed
universe of values. The following logical equivalences demonstrate how
to correctly negate quantified open propositions.

1. ¬ [∀x p(x)]⇔ ∃x ¬p(x) .

2. ¬ [∃x p(x)]⇔ ∀x ¬p(x) .

3. ¬ [∀x ¬p(x)]⇔ ∃x p(x) .

4. ¬ [∃x ¬p(x)]⇔ ∀x p(x) .

Example 6: Consider the following five open statements over the universe
of integers:

p(x): x > 0
q(x): x is even
r(x): x is a perfect square
s(x): x is exactly divisible by 4
t(x): x is exactly divisible by 5

Provide the symbolic forms for each of the following open statements
with quantifiers:

a. “At least one integer is even.”

b. “There exists a positive integer that is even.”
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c. “If x is even, then x is not divisible by 5.”

d. “No even integer is divisible by 5.”

e. “There exists an even integer divisible by 5.”

f. “If x is even and x is a perfect square, then x is divisible by 4.”

Example 7: Assuming the universe of real numbers, let’s negate (and sim-
plify) the following open statements:

a. ∀x ∀y [(x > y)→ (x− y > 0)]

b. ∀x ∀y [(x < y)→ ∃ z (x < z < y)]

c. ∀x ∀y [(|x| = |y|)→ (y = ±x)]

3.7 Rules for Theorem Proving

One way to prove a statement is true for all values in a given universe
is to do so by brute force: test all possible values from the universe to
show or determine which ones make the open statement true. Rightly so,
this is refered to as the Method of Exhaustion and is typically not a fea-
sible strategy. Thus, we consider two general rules to facilitate proving
theorems that involve quantifiers on open statements. The first one we
consider is the Rule of Universal Specification, a logical implication stated
in the previous section and now discussed in more detail.
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Rule of Universal Specification (or RUS):

If a particular open statement becomes true for all replacements by ele-
ments of a given universe, then the open statement is true for each specific
individual element (value) in the universe. Symbolically, we write

If ∀x p(x) is true, then p(a) is true for each a in the universe.

Example 1: Suppose the universe consists of all people and let m(x) return
true if person x is a math professor and c(x) return true if person x has
studied calculus. Consider the following argument:

All math professors have studied calculus. Leona is a math professor.
Therefore, Leona has studied calculus.

We can use RUS to argue that Leona (person l) indeed studied calculus.

∀x [m(x)→ c(x)] Premise
m(l) Premise

∴ c(l) RUS

Rule of Universal Generalization (or RUG):

If open statement p(x) is proved to be true when x is replaced by any
arbitrarily chosen element c from the universe, then ∀x p(x) is true.

Example 2: Suppose p(x), q(x) and r(x) are open statements on the same
universe (of values). Prove the validity of the following argument:

∀x [p(x)→ q(x)] Premise
∀x [q(x)→ r(x)] Premise

∴ ∀x [p(x)→ r(x)] Conclusion
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Step Reason(s)

1. ∀x [p(x)→ q(x)] Premise

2. p(c)→ q(c)

3. ∀x [q(x)→ r(x)] Premise

4. q(c)→ r(c)

5. Law of Syllogism

6. ∴ ∀x [p(x)→ r(x)]

Common proof strategies include

1. Direct Proof

2. Contrapositive Argument

3. Proof by Contradiction

Let’s demonstrate each of these in the following examples where we will
use the following definitions:
Definition: An integer n ∈ Z is even if there exists an integer k ∈ Z such
that n = 2k. Zero is considered as an even integer.

Definition: An integer n ∈ Z is odd if there exists an integer k ∈ Z such
that n = 2k + 1.

Example 3: (Direct Proof) For all integers k and l, if k and l are odd, then
their product is also odd.

Proof. Since k and l are odd, we can write k = 2a + 1 and l = 2b + 1 for
some integer a and b. Then, kl = (2a + 1)(2b + 1) = 4ab + 2a + 2b + 1 =

2(2ab+ a+ b) + 1. Since 2ab+ a+ b is an integer, then kl must be odd.

Example 4: (Direct Proof) If m is an even integer, then m + 7 is odd.

Proof. Since m is even, we can write m = 2a, for some integer a. Then,
m+ 7 = 2a+ 7 = 2a+ 6+ 1 = 2(a+ 3) + 1. Since a+ 3 is an integer, m+ 7
must be odd.
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Example 5: (Contrapositive Argument) If m is an even integer, then m + 7
is odd.

Proof. Suppose m + 7 is not odd, hence even. Then, we can write m + 7 =

2b, for some integer b. So m = 2b− 7 = 2b− 8+ 1 = 2(b− 4)+ 1 and b− 4
is an integer. But m would have to be odd contradicting the assumption
that m is even. Therefore, m + 7 must be odd.

Example 6: (Proof by Contradiction) If m is an even integer, then m + 7 is
odd.

Proof. Assume m is even and that m + 7 is also even. Then, we can write
m+ 7 = 2c, for some integer c. So, m = 2c− 7 = 2(c− 4) + 1 with c− 4 an
integer. Hence, m must be odd and that contradicts our assumption that
m is even. Therefore, m + 7 must be odd (not even).
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4 Set Theory

Definitions: Set Equality, Subset, and Proper Subset: Let C and D be
sets from a universe U. Then,

• If for every x ∈ C, we also have x ∈ D and in addition, if for every
x ∈ D, we have x ∈ C, (i.e. the sets C and D contain exactly the same
elements), then we say C and D are equal and denote this C = D.

• If for every x ∈ C, we also have x ∈ D, then we say that C is a subset
of D and denote this as C ⊆ D.

• If for every x ∈ C, it is true that x ∈ D and in addition there exists
y ∈ D such that y /∈ C (i.e D contains elements that are not also in
C), then we say that C is a proper subset of D, denoted by C ⊂ D (i.e.
equality of the two sets is not possible.)

Notes:

• The use of ⊆ to describe set relationships includes the logical inclu-
sive or option of a proper subset relationship or set equality.

• Using the definition of subset, it follows directly that if C ⊆ D and
D ⊆ C, then C = D.

• Note that |∅| = 0 (i.e. the cardinality of the empty set is zero) and
{0} 6= ∅ (i.e. the set containing the element zero is not equal to the
empty set).

Example 1: Suppose we have the universe

U = {1, 2, 3, 4, 5, 6, x, y, {1, 2}, {1, 2, 3}, {1, 2, 3, 4}}

so that |U| = 11. If A = {1, 2, 3, 4}, is A ∈ U? . If {A} is a set
that only contains the set A, is {A} ⊂ U? . So, is there a differ-
ence between A as an element of the universe and {A} as a subset of the
universe? . Is {A} 6∈ U true?
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4. Set Theory

Example 2: Suppose the universe U = {1, 2, 3, 4, 5} and A = {1, 2, 3},
B = {3, 4}, and C = {1, 2, 3, 4}. Determine the validity of the following
statements: A ⊂ C B ⊂ C

B 6⊂ A A 6⊂ A
A ⊂ A B 6⊆ A

Example 3: Recall from Section 1 that the power set of a set A, de-
noted by P(A), is the set of all possible subsets of the set A. Suppose
C = {1, 2, 3, 4}. Derive P(C) and |P(C)|.

Below are logically equivalent statements involving subsets and set equal-
ity:

Logical Equivalences for Subsets:

A ⊆ B ⇔ ∀x [x ∈ A⇒ x ∈ B]
A 6⊆ B ⇔ ¬∀x [x ∈ A⇒ x ∈ B]

⇔ ∃x¬ [x ∈ A⇒ x ∈ B]
⇔ ∃x¬ [¬(x ∈ A) ∨ x ∈ B]
⇔ ∃x [x ∈ A ∧ ¬(x ∈ B)]
⇔ ∃x [x ∈ A ∧ x 6∈ B]

A = B ⇔ A ⊆ B ∧ B ⊆ A
A 6= B ⇔ ¬ [A ⊆ B ∧ B ⊆ A]

⇔ ¬(A ⊆ B) ∨ ¬(B ⊆ A)

⇔ (A 6⊆ B) ∨ (B 6⊆ A)

A ⊂ B ⇔ (A ⊆ B) ∧ (A 6= B)
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Theorem (Dimension of Power Set ): If the set A is finite and |A| = n,
where n ≥ 0. Then, A has 2n subsets, or |P(A)| = 2n.

Proof. (
n
0

)
+

(
n
1

)
+

(
n
2

)
+ · · ·+

(
n
n

)
=

n

∑
k=0

(
n
k

)
= 2n, for n ≥ 0 .

Example 4: Let’s revisit the staircase path problem and consider a path
on the xy grid from the point (2, 1) to the point (7, 4). Let U denote a
move upward and R denote a move to the right. Two possible paths are
illustrated below as subsets of upward moves:

1 2 3 4 5 6 7 8 U subset
R U R R U R R U {2, 5, 8}
U R R R U U R R {1, 5, 6}

How many ways can we choose 3 upward moves or how many ways can
we choose 5 moves to the right?

Special Sets:

Z = integers {0, 1,−1, 2,−2, . . .}
N = nonnegative integers {0, 1, 2, 3, . . .} (natural numbers)
Z+ = positive integers {1, 2, 3, . . .} or {x ∈ Z|x > 0}
Q = rational numbers {a/b | a, b ∈ Z∧ b 6= 0}

Q+ = positive rational numbers {r ∈ Q∧ r > 0}
R = real numbers
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4. Set Theory

4.1 Set Operations and Laws

Let A and B be two subsets of the universe U. Then,

a. A ∪ B is the union of A and B defined by {x|x ∈ A ∨ x ∈ B}.

b. A ∩ B is the intersection of A and B defined by {x|x ∈ A ∧ x ∈ B}.

c. A4B is the symmetric difference of A and B defined by {x|(x ∈
A ∨ x ∈ B) ∧ ¬(x ∈ A ∧ x ∈ B)} = {x|x ∈ (A ∪ B) ∧ x 6∈ (A ∩ B)}.

Example 1: Suppose U = {1, 2, 3, . . . , 10}, A = {1, 2, 3, 4, 5}, B = {3, 4, 5, 6, 7},
and C = {7, 8, 9}. Determine A4B and A4C.

Definition (Disjointness): If S,T ⊆ U, then S and T are disjoint (or mu-
tually disjoint) if S ∩ T = ∅.

Theorem: For S,T ⊆ U, S and T are disjoint if and only if S ∪ T = S4T.

Definition (Complement): For A ⊆ U, the complement of A is the set
{x|x ∈ U ∧ x 6∈ A} = A = U − A.

Definition (Relative Complement): For A,B ⊆ U, the relative comple-
ment of A in B is the set {x|x ∈ B ∧ x 6∈ A} = B− A.

Example 2: Suppose U = {1, 2, 3, . . . , 10}, A = {1, 2, 3, 4, 5}, B = {3, 4, 5, 6, 7},
and C = {7, 8, 9}. Determine the following sets:

B− A = A− B =

A− C = C− A =

U − A = A− A =
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Theorem: For A,B ⊆ U, the following statements are equivalent:

A ⊆ B A ∪ B = B A ∩ B = A B ⊆ A

4.2 Laws of Set Theory

We can adapt most of the laws already discussed in Section 3.4 for sets.
For instance, both the union (∪) and intersection (∩) operations on sets
satisfy commutative and associative laws of logic. Other common laws of
logic for sets include the following identities, where the universe here is
denoted U:

1. Distributive Laws A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)
A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

2. Idempotent Laws A ∪ A = A
A ∩ A = A

3. Identity Laws A ∪∅ = A
A ∩U = A

4. Inverse Laws A ∪ A = U
A ∩ A = ∅

5. Domination Laws A ∪U = U
A ∩∅ = ∅

6. Absorption Laws A ∪ (A ∩ B) = A
A ∩ (A ∪ B) = A

7. DeMorgan’s Laws for Sets (A ∪ B) = (A ∩ B)
(A ∩ B) = (A ∪ B)

Definition (Principle of Set Duality): Let S be any identity made up of
operations of ∪ and ∩ and any sets including ∅ and U. Then the dual of
the S denoted by Sd is defined by the following procedure:

1. Replace every occurrence of ∅ in S by the universe U and vice-versa.
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4. Set Theory

2. Replace every occurrence of ∪ by ∩ in S and vice-versa.

The next theorem tells us that the dual, Sd, of an identity S is also an
identity (i.e. a true statement) like the identities given above.

Theorem (Principle of Duality): The equality of two sets implies the
equality of their respective dual sets.

Example 4: Simplify [(A ∪ B) ∩ C] ∪ B.

In order to specify multiple unions or intersections of a family of sets, we
utilize an index set I of nonnegative integers (e.g., I = Z+ is a typical
index set). That is, for each i ∈ I, let Ai ⊆ U for the universe U. Ai then
forms what we call an indexed family of sets and we can then define the
following:

Definition: The union of an indexed family of sets, Ai, is denoted and
defined as⋃

i∈I

Ai = {x|x ∈ Ai; for at least onei ∈ I} = {x|∃i ∈ I such that x ∈ Ai};
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4.2. Laws of Set Theory

and the intersection of an indexed family of sets, Ai, is denoted and
defined as⋂

i∈I

Ai = {x|x ∈ Ai for every i ∈ I} = {x|∀i ∈ I, x ∈ Ai}.

Theorem (Generalized DeMorgan’s Laws): Let I be an index set and in a
universe U, let A ⊆ U. Then for i ∈ I and Ai ⊆ U,⋃

i∈I

Ai =
⋂
i∈I

Ai, and
⋂
i∈I

Ai =
⋃
i∈I

Ai, .
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5. Mathematical Induction and Recursion

5 Mathematical Induction and Recursion

5.1 The Principle of Mathematical Induction

The Principle of Mathematical Induction is a very useful technique used
to prove a proposition of the form “for all positive integers, n, p(n)” where
p(n) is an open proposition about n. (i.e. ∀n ∈ Z+(p(n))). (Also can be
on the set N = {0, 1, 2, 3, 4, . . .}.)

Note: None of our proof methods so far can assist with proving such
propositions and thus, this section introduces the Principle of Mathemat-
ical Induction which provides the method for a proof by induction.

Before formally stating the principle, we note that there are two main
steps or parts to an induction proof and then illustrate the steps with an
example of a proposition, p(n) over the positive integers, Z+.

a. The base case. This step of an induction proof directly proves that
the statement given as p(n) is true for n = n0 where n0 is the smallest
member of the set about which the statement is supposed to be true.
(e.g., if we want to prove p(n) over all the natural numbers, N, then
n0 = 0; if instead we want to prove it is true over the infinite set
A = {3, 4, 5, 6, . . .}, then n0 = 3.)

b. The induction step. This step relies on assuming that p(k) is true for
some k in the set under consideration and then using this to show that
the statement p(k + 1) is true. (i.e. prove that for some k in the set,
p(k)→ p(k+ 1).) The assumption that p(k) is true for some particular
but arbitrary k in the set is known as the induction hypothesis.

c. After these two steps are established, they are used along with the
Principle of Mathematical Induction to conclude the statement p(n)
is true for all values n in the set begin considered.
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5.1. The Principle of Mathematical Induction

Figure 1: Illustration of the domino effect of the principle of mathematical induction. Image from:
WillemsPlanet.com

Let’s illustrate the two steps above for the following universally quantified
proposition: ∀n ∈ Z+, p(n), where p(n) is the open proposition defined
as:

p(n) :=
n

∑
i=1

i =
n(n + 1)

2
.

Comments:

• p(n) is a proposition that states the two expressions shown are equal
to one another: the summation given from i = 1 to any n ∈ Z+ is the
same as the formula given on the right in terms of n.

• The form of the universally quantified proposition, ∀n ∈ Z+P(n),
fits the situation in which the Principle of Mathematical Induction is
needed.
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5. Mathematical Induction and Recursion

• The goal in proving this universally quantified proposition is to ac-
tually show that the left hand side of the equality statement in p(n)
(the summation) is equal to the right hand side of the equality (the
formula) in p(n) for all n ∈ Z+.

Now we illustrate how to carry out the two steps given above on this
particular example:

Step 1 The Base Case: Check that p(n) is a true statement for n = n0,
the smallest element in Z+. Thus, let n0 = 1. Then starting with
the left hand side of the expression in p(n) (i.e. the summation),
we demonstrate that for n = 1, this is equal to the right hand side
of the expression in p(n) (i.e., the formula). Here, we do this by
showing each expression is equal to the same value when n =

n0 = 1:

n=n0=1

∑
i=1

i = 1 and
n(n + 1)

2
=

1(1 + 1)
2

=
1(2)

2
= 1.

Therefore, the open proposition p(n) :=
n

∑
i=1

i =
n(n + 1)

2
is true for

n0 = 1 and the base case is proven.

Step 2 The induction step: for an arbitrarily but particular n ∈ Z+, prove
that

p(n) =⇒ p(n + 1).

Thus, assume that the premise p(n) is true and proceed to show
that p(n + 1) is true. Note that the induction hypothesis is that

p(n) :=
n

∑
i=1

i =
n(n + 1)

2
is true for some n ∈ Z+.

Recall that p(n + 1) is also an open proposition about equality of
two expressions. So, first, examine what p(n + 1) is:

p(n + 1) :=
n+1

∑
i=1

i =
(n + 1)((n + 1) + 1)

2
.
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5.1. The Principle of Mathematical Induction

Then, given this, we begin with the summation expression of the
p(n + 1) proposition and proceed to show this is equal to the for-
mula expression in the proposition using the induction hypothesis
along the way.

n+1

∑
i=1

i = 1 + 2 + 3 + · · ·+ n + (n + 1)

= (1 + 2 + 3 + · · ·+ n)︸ ︷︷ ︸
Look f amiliar?

+(n + 1)

=
n(n + 1)

2
+ (n + 1) using the induction hypothesis.

=
n(n + 1)

2
+

2(n + 1)
2

(algebra)

=
n2 + 3n + 2

2
(algebra)

=
(n + 1)(n + 2)

2
(algebra)

=
(n + 1)((n + 1) + 1)

2
. (algebra)

Thus, we have shown that

n+1

∑
i=1

i =
(n + 1)((n + 1) + 1)

2
,

which verifies the claim that p(n) =⇒ p(n + 1), which is the
induction step outlined above.

Having shown these two parts (the base case and the induction
step), we can then use the Principle of Mathematical Induction to
conclude that

∀n ∈ Z+,
n

∑
i=1

=
n(n + 1)

2
.

It has already been stated above that we can use the Principle of Mathe-
matical Induction (PMI), but to see why this is so, we now formerly state
and prove it, which requires us to also understand something about the
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5. Mathematical Induction and Recursion

what it means for a set like Z+ to be well-ordered.

Well-Ordering Principle (WOP):
Every nonempty subset of Z+ contains a smallest element. (e.g., Z+ and
{3, 4, 5, 6 . . .} are examples of well ordered sets as is N which essentially
is the union of {0} with Z+, and the idea of well-ordering is preserved.)

Principle of Mathematical Induction (PMI):
Let S(n) be an open proposition with one or more occurrences of the vari-
able n for n ∈ Z+. Let n0 denote the smallest element in Z+, i.e. n0 = 1.

(a) If S(n0 = 1) is true, and

(b) if, whenever S(k) is true for some arbitrary k ∈ Z+, this implies S(k +
1) is also true (i.e. ∀k ≥ n0[S(k) =⇒ S(k + 1)]),

then we can conclude that S(n) is true ∀n ∈ Z+.

Proof. Assume S(n) is an open proposition and the two conditions (a) and
(b) above are satisfied. Note that n0 = 1 is the smallest element of Z+. Let
F = {t ∈ Z+| S(t) is false}, the set of all values in Z+ for which S(n) is
false. We wish to show that F = ∅ and so, assume by way of contradiction
that F is not empty. Since we are assuming F is not empty, by the WOP
we know F has a smallest element, say m. Since S(1) is true by condition
(a), it then follows that m 6= 1. Additionally, since n0 = 1 was the smallest
element in Z+, m > 1 and m − 1 ∈ Z+. Since m − 1 < m, we know
that m− 1 /∈ F since we assumed m was the smallest element in F. Thus,
since m− 1 /∈ F, we have that S(m− 1) is true. Therefore, by condition (b)
S(m− 1+ 1) is also true, i.e. S(m) is true; however, this implies that m ∈ F
and so we have a contradiction. Our assumption that F 6= ∅ is false and
so F must be empty meaning that S(n) is true ∀n ∈ Z+.

A more symbolic representation of PMI would be

[S(n0) ∧ [∀k ≥ n0[S(k) =⇒ S(k + 1)]]] =⇒ ∀n ≥ n0, S(n) ,

where S(n0) denotes the “base case.”
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5.1. The Principle of Mathematical Induction

Example 1: Verify the formula
n

∑
i=1

i2 =
n(n + 1)(2n + 1)

6
, holds ∀ n ∈ Z+.
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5. Mathematical Induction and Recursion

Example 2: Let’s verify that the following is true:

∀n ∈ Z+,
n

∑
i=1

i = 1 + 2 + 3 + ... + n =
n(n + 1)

2
.
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5.1. The Principle of Mathematical Induction

Example 3: Suppose we want to construct a formula to sum consecutive
odd positive integers:

1 =1 = 12

1+3 =4 = 22

1+3+5 =9 = 32

1+3+5+7 =16 = 42

This pattern suggests that S(n) defined as
n

∑
i=1

(2i − 1) = n2 would be a

good candidate for the desired formula. Use the PMI to verify this for-
mula.
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Example 4: (Program Verification/Software Engineering) Consider the
following pseudocode to compute x(yn) for real (float) variables x, y, and
nonnegative integer n:

while n 6= 0 do

begin

x:=x*y

n:=n-1

end

answer := x

Define S(n) as follows:∀x, y ∈ R if program reaches the top of the while

loop with n ∈ N after the loop is by-passed (if n = 0) or the two loop
instructions are executed n (> 0) times, the value of the variable answer

is x(yn).

Consider S(0), i.e., the code doesn’t enter the loop and answer will con-
tain the value of x and that is equivalent to x(y0) so S(0) is true.

Our induction hypothesis is that S(k) is true for some k ∈ Z+: answer
variable is x(yk) after the loop ends.

Now consider the proposition S(k + 1):= answer=x(yk+1). When the pro-
gram reaches the top of the loop, n = k + 1 > 0 for the first time and the
current value of x by the induction hypothesis is x = x ∗ (yk). Thus, we
have the new assignment of x as x = x ∗ y = x ∗ (yk) ∗ y = x ∗ (yk ∗ y) =
x ∗ yk+1 which gets assigned to the variable answer.

while n 6= 0 do

begin

x:=x*y

n:=n-1

(memory trace)
end

answer := x
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5.2. Recursive Definitions

Memory Trace: (at end of loop):

&x &y &n

xy y n− 1 S(1)
xy2 y n− 2 S(2)
xy3 y n− 3 S(3)

...
...

...
...

xyk y n− k S(k)
xyk+1 y n− (k + 1) S(k + 1)

...
...

...
...

xyn−1 y 1 S(n− 1)
xyn y 0 S(n)

5.2 Recursive Definitions

A recursive definition for a sequence an:
Let a0 = 1, a1 = 2, a2 = 3 and define ∀n ∈ Z+, n ≥ 3,

an = an−1 + an−2 + an−3.

Now, consider the following equivalent compound propositions: P1∧ (P2∧
P3) ⇔ (P1 ∧ P2) ∧ P3. Each is equivalent to P1 ∧ P2 ∧ P3. However, how
would we use parenthesis to evaluate a compound proposition such as:
about P1 ∧ P2 ∧ P3 ∧ P4?

Recursive Definition:

1. The conjunction of P1 P2 is defined by P1 ∧ P2.

2. Define P1 ∧ P2 ∧ ...∧ Pn ∧ Pn+1 ⇔ (P1 ∧ P2 ∧ ...∧ Pn) ∧ Pn+1.

Does position really matter for ∧? It seems appropriate for the following
chain of equivalences to be true:
P1 ∧ P2 ∧ P3 ∧ P4 ⇔ (P1 ∧ P2 ∧ P3) ∧ P4 ⇔ P1 ∧ (P2 ∧ P3 ∧ P4) ⇔ (P1 ∧ P2) ∧
(P3 ∧ P4). This leads to the following law, the proof of which (not shown)
utilizes idea of recursion and the Principle of Mathematical Induction.
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Generalized Association Law for ∧:

Let n ∈ Z+ where n ≥ 3 and r ∈ Z+ with 1 ≤ r ≤ n. For any statements
P1 P2 ... Pr Pr+1 ... Pn

(P1 ∧ P2 ∧ ...∧ Pr) ∧ (Pr+1 ∧ ...∧ Pn)

⇔ P1 ∧ P2 ∧ ...∧ Pr ∧ Pr+1 ∧ ...∧ Pn

Applying the above for set unions (and analogously for set intersections),
we have: Given A1, A2, . . . , An, An+1 with Ai ⊆ U for 1 ≤ i ≤ n + 1.

1. The union of A1, A2 is A1 ∪ A2.

2. The union of A1, A2, . . . , An, An+1 for n ≥ 2 is

A1 ∪ A2 ∪ · · · ∪ An ∪ An+1 = (A1 ∪ A2 ∪ · · · ∪ An) ∪ An+1 .

Example 1: Recall that
n

∑
r=0

(
n
r

)
=

n

∑
r=0

C(n, r) = 2n.

This is the number of subsets for a set of size n. A useful (and easy to
verify) recursive definition for C(n + 1, r) is given by(

n + 1
r

)
=

(
n
r

)
+

(
n

r− 1

)
for n ≥ r ≥ 0 .

Example 2: (Recursively Defined Sets)

X:=

(i) 1 ∈ X, and

(ii) ∀a ∈ X, a + 2 ∈ X.

E:=

(i) 2 ∈ E, and

(ii) ∀n ∈ E, n + 2 ∈ E.

G:=

(i) 0 ∈ G, and

(ii) ∀m ∈ G, m + 2 ∈ G.
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6 Integer Properties

6.1 Division Algorithm

Definition (Division): If a, b ∈ Z and b 6= 0, we say b divides a (we write
b|a) if ∃ n ∈ Z such that a = bn. We call b the divisor and say that a is a
multiple of b.

Theorem: For a, b, c ∈ Z

a. 1|a and a|0

b. [(a|b) ∧ (b|a)] =⇒ a = ±b

c. [(a|b) ∧ (b|c)] =⇒ a|c

d. a|b =⇒ a|bx, ∀x ∈ Z

e. If x = y+ z for some x, y, z ∈ Z and a divides two of the three integers
x, y, z, then a divides the third.

f. [(a|b) ∧ (a|c)] =⇒ a|(bx + cy) ∀x, y ∈ Z.
(Note: bx + cy is a called a linear combination of b and c)

Proof. If a|b and a|c, then b = am and c = an for some m, n ∈ Z. Then,
bx + cy = (am)x + (an)y = a(mx + ny). Since mx + ny ∈ Z, we know
a|(bx + cy).

g. For 1 ≤ i ≤ n, let ci ∈ Z. If a divides ci, then a|(c1x1 + c2x2 + · · ·+
cnxn), where xi ∈ Z for all 1 ≤ i ≤ n.

Example 1: Can we find x, y, z ∈ Z so that 6x + 9y + 15z = 107? No,
because 3|6, 3|9, 3|15 so 3|6x + 9y + 15z but 3 6 | 107.
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Example 2: Let a, b ∈ Z so that 2a + 3b is a multiple of 17. Let’s use the
above theorem to prove that 17 divides 9a + 5b.

Proof. 17|(2a + 3b) =⇒ 17|(−4)(2a + 3b); Also, we know that 17|17;
so 17|(17a + 17b) as well (see Part f of Theorem above). Then 17|[(17a +
17b) + (−4)(2a + 3b)] =⇒ 17|(17a + 17b − 8a − 12b) =⇒ 17|(9a +
5b).

Definition (Primes): All integers in Z+ greater than 1 that have exactly
two divisors are called primes. Examples: 2, 3, 5, 7, 11, 13, 17, . . .. All the
other positive integers are called composites.

Lemma: If n ∈ Z and n is composite, then there is a prime number p such
that p|n.

Proof. Let S be the set of all composite integers that have no prime di-
visors. If S 6= ∅, then by WOP, we know S has a least element m. If
m is composite, then we can write m = m1m2 where m1m2 ∈ Z+ with
1 < m1 < m and 1 < m2 < m. Since m1 6∈ S (because m is the least ele-
ment of S) we know that m1 must be prime or is divisible by a prime. In
the latter case, there would exist a prime p such that p|m1. But m = m1m2

so we also have p|m as well, which is a contradiction since we assume
m ∈ S. Therefore S = ∅. Thus if n ∈ Z is composite, then there exists p, a
prime, such that p|n.

Theorem (Euclid’s): There are infinitely many primes (4th century BC).

Proof. Assume there are a finite number of primes and list them as p1, p2, p3, ..., pk.
Let B = (p1 × p2 × · · · × pk) + 1. Since B > pi, ∀i ≤ k, B cannot be prime
(hence composite). So by the Lemma (above), ∃pj with 1 ≤ j ≤ k and
pj|B. Since pj|B, and pj|(p1 × p2 × · · · × pk) then pj must divide 1 (previ-
ous Theorem Part e). That means pj cannot be prime – a contradiction.
Therefore, there must be an infinite number of primes.
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Theorem (Division): If a, b ∈ Z with b > 0, ∃ a unique q, r ∈ Z with
a = qb + r, 0 < r < b. We call q the quotient and r the remainder.

Pseudocode for Integer Division (for b dividing a):

int divide(a,b){
if a = 0 then

quotient := 0

remainder := 0

else

r := abs(a)

q := 0

while r ≥ b

r := r - b

q := q + 1

end

if a > 0 then

quotient := q

remainder := r

else if r = 0 then

quotient := -q

remainder := 0

else

quotient := -q -1

remainder := b - r

end

end

}

Example 3: Let’s trace the execution of the pseudocode above for 4|(−12):

a b r q

-12 4 12 0

8 1

4 2

0 3

Thus, the quotient becomes -3 and the remainder is 0.
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Example 4: Complete the trace (execution) table below for 4|(−11):

a b r q

-11 4 11 0

Example 5: A grocery store runs a weekly contest. Each customer who
purchases more than $20 worth of groceries receives a game card with 12
numbers on it. If any of the numbers on the game card sum to exactly
500, then the customer wins a $500 shopping spree at the store.
Suppose Elena buys $22.83 at the store and her card has the following
numbers:

144, 336, 30, 66, 138, 162, 318, 54, 84, 288, 126, 468

.
Does Elena win?
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6.2 Greatest Common Division (Euclidean Algorithm)

Definition (Common Divisor): For a, b ∈ Z, a positive integer c is said to
be a common divisor of a and b if c|a and c|b.

Now if either a 6= 0 or b 6= 0 then c ∈ Z+ is called the greatest com-
mon divisor (gcd) of a, b if

1. c|a and c|b, and

2. for any common divisor of a and b, say d, we have d|c.

Example 1: The common divisors of 42 and 70 are 1, 2, 7, 14. Thus, gcd(42,70)
= 14.

Theorem (gcd): For a, b ∈ Z+, ∃ a unique c ∈ Z+ such that c = gcd(a, b).

Important Properties:

1. gcd(a, b) = gcd(b, a).

2. ∀a ∈ Z, if a 6= 0 then gcd(a, 0) = |a|.

3. For a, b ∈ Z+, gcd(−a, b) = gcd(a,−b) = gcd(−a,−b).

4. gcd(0, 0) is undefined.

5. c = gcd(a, b) is the smallest possible integer that can be written as a
linear combination of a and b (from uniqueness of gcd proof)

6. a, b are called relatively prime when gcd(a, b) = 1 (i.e., There is no inte-
ger greater than 1 that divides both a and b; thus, ∃x, y ∈ Z such that
ax + by = 1).

7. If gcd(a, b) = d, then gcd(a/d, b/d) = 1.

8. If a, b ∈ Z+ and c = ax + by for some x, y ∈ Z, we cannot conclude
that c = gcd(a, b).
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Example 2: Since gcd(42,70) = 14 ∃x, y ∈ Z such that
42x + 70y = 14 or 3x + 5y = 1. It is easy to check that x = 2 and y = −1
works but note that ∀k ∈ Z we can have:

1 = 3(2-5k) + 5(-1+3k),
14 = 42(2-5k) + 70(-1+3k).

Theorem (Euclidean Algorithm): Let a, b ∈ Z+ and
set r0 = a and r1 = b. Apply the Division Algorithm n times as follows
(assume a > b):

r0 = q1r1 + r2, for 0 < r2 < r1 (start with a/b)
r1 = q2r2 + r3, for 0 < r3 < r2

r2 = q3r3 + r4, for 0 < r4 < r3

...
ri = qi+1ri+1 + ri+1, for 0 < ri+2 < ri+1

...
rn−2 = qn−1rn−1 + rn, for 0 < rn < rn−1

rn−1 = qnrn

The final nonzero remainder, rn is gcd(a, b).

Example 3: Compute gcd(250,111) using the Euclidean Algorithm:
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Example 4: Suppose a GTA helps a student debug a Java program in 6

minutes, but it takes 10 minutes to debug a C++ program. If the GTA
works continuously for 104 minutes (and doesn’t waste time), how many
programs can he/she debug in each language?

Goal: We want integers x, y ≥ 0 such that 6x + 10y = 104. (This is called a
Diophantine equation because it is a polynomial in which integer solutions
are sought.)
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6.3 RSA Encryption

RSA stands for Ron Rivest, Adi Shamir and Leonard Adleman, who first
publicly described the encryption algorithm in 1978.

Modular arithmetic for integers is a wrap-around type of arithmetic op-
eration as is used in our clock system. There are 24 hours in a day, and
although the 24 hour convention of stating the time is sometimes used,
often, instead of saying 13:00 for the hour after noon, we say 1:00. Thus,
1 is equivalent to 13 mod 12. Essentially, the 1 here is the remainder after
dividing 13 by 12. Another example: 3 is equivalent to 1 mod 2 and 4 is
equivalent to 0 mod 2.

Definition: Define the set of integers modulo p (mod p) as

Zp = {0, 1, 2, . . . , p− 1}.

Definition (Multiplicative Inverse): A multiplicative inverse (or MI) is a
number when multiplied by x will equal 1 (written x−1). So, x · x−1 = 1.

Notable Fact: Two integers, x and p, with x ∈ Zp have a gcd of 1 if
and only if x has a MI in the modulo of p. i.e. x ∈ Zp and gcd(x, p)
= 1⇔ x−1 ∈ Zp.

Example 1: 4 ∈ Z9 and gcd(4, 9) = 1 so 4 has a MI (4−1) in mod 9. In fact,
4 · 7 = 28 = 1 mod 9.

Not all integers will have MI’s though. We know that 3 ∈ Z9 but gcd(3, 9)
6= 1. For any prime number p, every integer from 1 up to p− 1 has a gcd
of 1 with p so therefore all those integers have a MI in modulo p.

Definition (Euler’s Totient): The number of elements that have a MI in a
set of modulo integers is called Euler’s Totient and it is represented by
the greek letter φ. In other words, φ is the number of elements that have
their gcd with the modulus equal to 1. Let P designate the set of all prime
numbers. If p ∈ P, then φ(p) = p− 1.

Example 2: φ(7) = |{1, 2, 3, 4, 5, 6}| = 6.

74



6.3. RSA Encryption

RSA is based on two algorithms:

1. Key generation (most complicated part; weak key generation makes
RSA very vunerable)

2. RSA Function Evaluation: a function F that takes input data x and a
key k and produces either an encrypted result or plain text.

Steps to create secure RSA keys:

1. Select two large prime numbers p and q (at least 512 digits, 1024 digits
preferred)

2. Generate modulus n by multiplying p and q (i.e., n = p× q).

3. Calculate the totient φ(n) = (p− 1)× (q− 1).

4. Generate a public key as a prime number calculated from the interval
[3, φ(n)] that has a gcd of 1 with φ(n).

5. Generate a private key as in the inverse of the prime number selected
in Step 4 (public key) with respect to mod φ(n).

Public Key: usually written as e, a prime number chosen in the range
[3, φ(n)]. In practice, e = 65, 537 so that it has a high probability of a gcd
of 1 with φ(n). This key is shared (not secret) so you don’t want e to be a
very large integer (desire efficient encryption). The public key is typically
represented as the ordered pair (e, n), where n is the modulus.

Private Key: Since the public key e has a gcd of 1 with φ(n), the MI of
the public key with respect to φ(n) can be determined by the Euclidean
Algorithm. The private key is then represented by the ordered pair (d, n),
where n is the modulus and e · d = 1 mod φ(n).

RSA Function Evaluation: Let m represent the data/message (integers for
now) and e be the public key. Then we encrypt the message via

F(m, e) = me mod n, where n = p× q

and F(m, e) returns the ciphered message c. To decrypt the ciphered mes-
sage c we use

F(c, d) = cd mod n, so that F(c, d) = m and e · d = 1 mod φ(n).
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Example 3: Produce the ciphered word for attack using the following
ASCII equivalent (base 10) integers for their respective letters:

a: 97 c: 99 k: 107 t: 116

If we choose the primes p = 17 and q = 37 as the factors of n = 629, then
φ(n) = 576. A possible public key e such that gcd(e,φ(n)) is 1 is e = 31.
We can then encode the word attack as follows:

a: 97 9731 mod 629 = 384
c: 99 9931 mod 629 = 317

k: 107 10731 mod 629 = 330
t: 116 11631 mod 629 = 283

So, the word attack which would normally be represented by 97 116 116 97 99 107
is encoded as 384 283 283 384 317 330.

Knowing that the public key is e = 31, one can decode the first character
(a) encoded as 384 only if the primes p = 17 and q = 37 are discovered. If
that is the case, then one only needs to determine the private key d such
that e · d = 1 mod φ(n), where φ(n) = 576. With the correct private key d,
one can compute F(384, d) = 97 and decrypt the character a.

Let’s use the Euclidean Algorithm (EA) to derive d using e = 31 and
φ(n) = 576.
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The mathematics of RSA encryption is based on Euler’s Theorem (1760)
from the field of number theory. Euler proved that

xφ(n) ≡ 1 mod n ,

where φ(n) is Euler’s Totient and x and n are relatively prime integers.
If we have the private key d then, cd ≡ (me)d (mod n). Therefore, cd ≡
m1+kφ(n) ≡ m× 1 ≡ m (mod n).
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7 Functions and Relations

We begin this section with definition of a few important sets that will be
helpful in the creation of functions and relations.

7.1 Cartesian Products and Relations

Definition (Cartesian Product): Given sets A and B, the Cartesian Prod-
uct or cross-product of A and B is defined by A× B = {(a, b) | a ∈ A, b ∈
B}.

Example 1: Let A = {2, 3, 4} and B = {4, 5}. Define A × B, B × A, and
B2 = B× B.

Definition (Relation): Given sets A and B, any subset of A× B is called
a (binary) relation from A to B. A subset of A× A is called a binary rela-
tion on A.

Example 2: If |A× B| = 6, how many possible relations are there from A
to B?

For finite sets A and B with |A| = m and |B| = n, there are 2mn relations
from A to B (this includes ∅ and A× B itself). We have the same number
of relations from B to A.

Example 3: Let B = {1, 2} and A = P(B) = {∅, {1}, {2}, {1, 2}}.
IsR = {(∅, ∅), (∅, {1}), (∅, {2}), (∅, {1, 2})} a relation on A?

Example 4: Let A = Z+ and define the relation R on A as {(x, y) | x ≤ y}.
Is (7, 11) ∈ R? Is (8, 2) ∈ R?
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Important Properties:

1. For any set A, A×∅ = ∅× A = ∅.

2. For A, B ⊆ U:

(a) A× (B ∩ C) = (A× B) ∩ (A× C)

(b) A× (B ∪ C) = (A× B) ∪ (A× C)

(c) (A ∩ B)× C = (A× C) ∩ (B× C)

(d) (A ∪ B)× C = (A× C) ∪ (B× C)

7.2 Functions

Definition (Function): For nonempty sets A and B, a function or map-
ping f from A to B (denoted by f : A → B) is a relation from A to B in
which every element a ∈ A appears exactly once as the first component of
an ordered pair, (a, b), for some b ∈ B.

Definition (Image): Given a function f : A → B, for the ordered pair
(a, b) ∈ f , we can write f (a) = b and b is called the image of a under the
function f .

Example 1: Let A = {1, 2, 3} and B = {w, x, y, z}. Define f = {(1, w), (2, x), (3, x)}.
Is f a function? Now, define R1 = {(1, w), (2, x)}. Is R1 a
function? Consider R2 = {(1, w), (2, w), (2, x), (3, z)}. Is R2

a function?

Definition (Domain, Co-Domain, and Range): For a function f : A→ B,
we call the set A the domain of f and the set B the co-domain of f . The
range of f is the set Range( f ) ⊆ B containing all the images of A under
f : Range( f ) = {b ∈ B|∃a ∈ A, f (a) = b}.

Common functions used in computer science applications:

a. floor defined by f (x) = bxc is the greatest integer less than or equal
to x. So f (x) = x if x ∈ Z and for x ∈ R−Z f (x) is the integer to the
immediate left on the real line. Examples: b3.8c = 3, b−3.8c = −4,
and b−3c = −3.
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b. ceiling defined by g(x) = dxe is the least integer greater than or equal
to x. So g(x) = x if x ∈ Z and for x ∈ R−Z g(x) is the integer to
the immediate right on the real line. Examples: d3.01e = 4, d3e = 3,
d3.7e = 4, d−3e = −3, d−3.07e = −3, and d−3.7e = −3.

c. trunc (or truncation) is the removal or deletion of the fraction. Exam-
ples: trunc(3.78) = 3 and trunc(−7.22) = −7. Note that trunc(3.78) =
b3.78c = 3 and trunc(−3.78) = d−3.78e = −3.

d. 2D-array storage - it is common to store 2d logical arrays as 1D ar-
rays in memory using row-major order access. Verify that the func-
tion f (aij) = (i− 1)× n + j will return the position (index) of the aij

element in a 1D (or linear) array.

Example 2: Evaluate the following:

b7.1 + 8.2c
b7.7 + 8.4c
b7.7c+ b8.4c
d3.3 + 4.2e
d3.3e+ d4.2e

Definition (One-to-One or Injective Function): A function f : A → B
is called one-to-one (1-to-1) or injective if every element of B appears at
most once as the image of an element of A. i.e. The function f is 1-1 if
f (a1) = f (a2) → a1 = a2. Let’s draw a diagram of a 1-to-1 function:
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Example 3: Consider f : R → R and g : R → R, where f (x) = 3x +

7, ∀x ∈ R and g(x) = x4 − x, ∀x ∈ R. Determine whether f and g are
1-to-1 functions?

Example 4: Let A = {1, 2, 3} and B = {1, 2, 3, 4, 5}.
Suppose f = {(1, 1), (2, 3), (3, 4)} and g = {(1, 1), (2, 3), (3, 3)}. Are both
f and g 1-to-1 functions?

Example 5: Suppose set A = {a1, a2, . . . , am} and set B = {b1, b2, . . . , bn}
with m ≤ n. Derive a formula for the number of 1-to-1 functions there are
from set A to set B.
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Theorem: Let f : A→ B and A1, A2 ⊆ A.

a. f (A1 ∪ A2) = f (A1) ∪ f (A2)

b. f (A1 ∩ A2) ⊆ f (A1) ∩ f (A2)

c. f (A1 ∩ A2) = f (A1) ∩ f (A2) if f is 1-to-1

Definition (Restriction, Extension): If f : A → B and A1 ⊆ A we define
f |A1 : A1 → B and call fA1 the restriction of the function f to the subset
A1. So ∀a ∈ A1, f |A1(a) = f (a). Similarly, if h : A1 → B and we define
g : A → B with g(a) = h(a), ∀a ∈ A1, then g is called the extension of
the function h to the set A.

Example 6: Suppose set A = {1, 2, 3, 4, 5} and we define f : A→ Z by

f = {(1, 10), (2, 13), (3, 16), (4, 19), (5, 22)}.

Define g : Q → R by g(q) = 3q + 7, ∀q ∈ Q and define h : R → R by
h(r) = 3r+ 7, ∀r ∈ R. Fill in the blanks below to complete each statement.

g is an extension of from A to .
f is the restriction of from Q to .
h is an extension of from A to .
h is an extension of from Q to .
f is the restriction of from R to A.
g is the restriction of from R to Q.
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Example 7: Let A = {w, x, y, z}, B = {1, 2, 3, 4, 5}, and A1 = {w, y, z}.
Suppose f = {(w, 1), (x, 3), (y, 5), (z, 4)} and g = {(w, 1), (y, 5), (z, 4)}.
Clearly g = f |A1 or we could say that f is an extension of g from A1 to A.
How many ways can we expand g from A1 to A?

7.3 Onto Functions

Definition (Onto or Surjective Function): A function f : A → B is called
onto or surjective if f (A) = B, i.e., ∀b ∈ B, ∃a ∈ A such that f (a) = b.
Note: If a function, f : A→ B, is onto, then B = Range( f ).

Example 1: f : R → R with f (x) = x3 is onto but g : R → R with
f (x) = x2 is not onto. Which of the functions below are onto functions?

f : Z→ Z with f (x) = 3x + 1, ∀x ∈ Z.
g : Q→ Q with g(x) = 3x + 1, ∀x ∈ Q.
h : R→ R with h(x) = 3x + 1, ∀x ∈ R.

Example 2: Let A = {1, 2, 3, 4} and B = {x, y, z}. Which of the functions
below are onto functions?

f1 = {(1, z), (2, y), (3, x), (4, y)}
f2 = {(1, x), (2, x), (3, y), (4, z)}
g = {(1, x), (2, x), (3, y), (4, y)}
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An important observation for onto functions is that if A and B are finite
sets and f : A→ B, then for f to be onto we must have |A| ≥ |B|.

Example 3: Let A = {x, y, z} and B = {1, 2}. Are all functions f : A → B
onto? How many onto functions are there from A to B?

In general, if |A| = m ≥ 2 and |B| = 2, then there are onto func-
tions from A to B.

Example 4: Let A = {w, x, y, z} and B = {1, 2, 3}. There are 34 functions
from A to B. For subsets of size 2, there are 24 functions from A to {1, 2},
24 functions from A to {2, 3} and 24 functions from A to {1, 3}. So, there
are

3× 24 or
(

3
2

)
× 24

functions from A to B that are not onto. Let’s derive the total number of
onto functions there can be from A to B.
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In general, for finite sets A and B with |A| = m and |B| = n, there are

n

∑
k=0

(−1)k
(

n
n− k

)
(n− k)m

onto functions from A to B.

7.4 Function Composition and Inverse Functions

Definition (Bijective Function): A function f : A → B is called bijective
or a 1-to-1 correspondence if it is both 1-to-1 and onto.

Definition (Identity Function): The special function 1A : A → A defined
by 1A(a) = a ∀a ∈ A is called the identity function on the set A.

Definition (Function Equality): For functions f , g : A→ B, we say that f
equals g and write f = g, if f (a) = g(a), ∀a ∈ A.

Example 1: Suppose f : Z → Z and g : Z → Q such that f (x) = x =

g(x), ∀x ∈ Z. Is f = g?

Example 2: Consider f , g : R→ Z with g(x) = dxe , ∀x ∈ R and

f (x) =
{

x, if x ∈ Z,
bxc+ 1, if x ∈ R−Z.

Determine whether or not f (x) = g(x), ∀x ∈ R?
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Definition (Composition of Functions): If f : A→ B and g : B→ C, then
the composition of g with f , g ◦ f , is a function g ◦ f : A → C and is
defined by

(g ◦ f )(a) = g( f (a)), ∀a ∈ A .

Example 3: Let A = {1, 2, 3, 4}, B = {a, b, c} and C = {w, x, y, z}. Sup-
pose f : A → B and g : B → C, with f = {(1, a), (2, a), (3, b), (4, c)} and
g = {(a, x), (b, y), (c, z)}. Derive g ◦ f and evaluate (g ◦ f )(1), (g ◦ f )(2),
(g ◦ f )(3), and (g ◦ f )(4).

Example 4: Suppose f , g : R → R with f (x) = x2 and g(x) = x + 5. De-
termine (g ◦ f )(x) and ( f ◦ g)(x). What can we say about the composition
of functions and commutativity?
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Theorem: Given f : A→ B and g : B→ C.

a. If f and g are onto, then (g ◦ f ) is onto.

b. If f and g are 1-to-1, then (g ◦ f ) is 1-to-1.

Theorem: Given f : A→ B, and g : B→ C, and h : C → D.

(h ◦ g) ◦ f = h ◦ (g ◦ f ) .

So, the composition of functions is associative.

Definition (Powers of Function): If f : A → A, we define f 1 = f and
f n+1 = f ◦ f n for n ∈ Z+. That is, powers are recursive applications of the
same function.

Example 5: Suppose A = {1, 2, 3, 4} and f : A→ A with

f = {(1, 2), (2, 2), (3, 1), (4, 3)} .

Determine f 2 and f 3.
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Definition (Converse of a Relation): For sets A and B with a relation R
from A to B, the converse of R (denoted by Rc) is a relation from B to A
defined as

Rc = {(b, a)| (a, b) ∈ R} .

Example 6: Suppose A = {1, 2, 3} and B = {w, x, y} with f : A → B de-
fined by f = {(1, w), (2, x), (3, y)}. Derive f c and compute f c ◦ f and f ◦ f c.

Definition (Invertible Function): If f : A → B, then f is invertible if
∃ g : B → A such that g ◦ f = 1A and f ◦ g = 1B. We call g the inverse of
f denoted g = f−1.

Example 7: Consider f , g : R → R with f (x) = 2x + 5 and g(x) =

(x− 5)/2. Show that both f and g are invertible functions.
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Theorem: A function f : A→ B is invertible if and only if f is 1-to-1 and
onto.

Example 8: Determine which of the following are invertible:

a. f1 : R→ R with f1(x) = x2.

b. f2 : [0, ∞+] → [0, ∞+] with f2(x) = x2.

Theorem: If f : A→ B and g : B→ C are both invertible, then
g ◦ f : A→ C is invertible and (g ◦ f )−1 = f−1 ◦ g−1.

When f : A → B is not invertible, we can still define the set given by f−1

but it will not represent an inverse function.

Definition (Preimage): If f : A→ B, and B1 ⊆ B, then

f−1(B1) = {x ∈ A| f (x) ∈ B1} .

We call f−1(B1) the preimage of B1 under the function f .
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Example 9: Let A = {1, 2, 3, 4, 5, 6} and B = {6, 7, 8, 9, 10}. Suppose f :
A→ B with f = {(1, 7), (2, 7), (3, 8), (4, 6), (5, 9), (6, 9)}. Is f 1-to-1?
Is f onto? .

Determine f−1(B1) and | f−1(B1)| for each of the cases of Bi below:

a. B1 = {6, 8}

b. B2 = {7, 8}

c. B3 = {8, 9}

d. B4 = {8, 9, 10}

e. B5 = {8, 10}

Theorem: If f : A→ B and B1, B2 ⊆ B, then

a. f−1(B1 ∩ B2) = f−1(B1) ∩ f−1(B2)

b. f−1(B1 ∪ B2) = f−1(B1) ∪ f−1(B2)

c. f−1(B1) = f−1(B1)

Theorem: If f : A → B for finite sets A and B with |A| = |B|, then the
following are all equivalent:

a. f is 1-to-1,

b. f is onto, and

c. f is invertible.
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7.5 Computational Complexity

How can we determine the runtime of an algorithm ahead of time and
how do we compare the runtime of different algorithms? Let f (n) be the
time complexity function for a given algorithm.

Definition (Dominated Function): Let f , g : Z+ → R. We say that the
function g dominates the function f if there exists constants m ∈ R+ and
k ∈ Z+ such that

| f (n)| ≤ m|g(n)|, ∀n ∈ Z+ and n ≥ k .

When f is dominated by g we say that f is of order (at most) g and write
f ∈ O(g). We can think of O(g) as the set of all functions having domain
Z+a and co-domain R that are dominated by g.

Example 1: Consider f , g : Z+ → R with f (n) = 5n and g(n) = n2,
∀n ∈ Z+. Show that f ∈ O(g).
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Now, prove that g 6∈ O( f ).

Example 2: Consider f , g : Z+ → R with f (n) = 5n2 + 3n + 1 and
g(n) = n2, ∀n ∈ Z+. Show that f ∈ O(g) and g ∈ O( f ).

In general, if

f (n) = atnt + at−1nt−1 + · · ·+ a2n2 + a1n + a0,

where the ai’s ∈ R, at 6= 0, and t ∈N, then O( f ) = O(nt).

92



7.5. Computational Complexity

Example 3: Consider f , g : Z+ → R with f (n) = 1 + 2 + · · · + n and
g(n) = 12 + 22 + · · · + n2. How do we know that f ∈ O(n2) and g ∈
O(n3)?

Example 4: If h : Z+ → R with h(n) =
n

∑
i=1

it, determine O(h(n)).
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Important time complexities:

BigOh Name
O(1) constant
O(log2 n) logarithmic
O(n) linear
O(n log2 n) n log2 n
O(n2) quadratic
O(n3) cubic
O(nt) polynomial (for t = 0, 1, 2, . . .)
O(cn) exponential (c > 1)
O(n!) factorial

For purposes of comparison, let’s complete the following table of entries:

n log2 n nlog2 n n2 2n n!
2 1 2 4 4 2

16 4 64 256
64 6 384 4096

94



7.5. Computational Complexity

Example 5: Determine the runtime complexity of the following C++ code
fragments:

sum=0; // fragment 1

for (i=0; i < n; i++) {

for (j=0; j < n; j++) {

sum=sum+1; } }

sum=0; // fragment 2

i=n;

while (i > 0) {

sum=sum+1;

i=floor(i/2); }

sum=0; // fragment 3

for (i=0; i < n; i++) {

j=n;

while (j > 0) {

sum=sum+1;

j=floor(j/2); } }

Example 6: Determine the runtime complexity of the following C++ func-
tion power that computes xn, where both x and n are integers.

long power (long x, long n)

if (n==0) return 1;

else

return x * power(x, n-1);

This is a recursive function obviously and we desire the runtime T(n)
for any input (integer) exponent n. We can see that initially (for n = 0)
we have T(0) = c1, for some constant c1. From the code, we have the
reccurence relation

T(n) = c2 + T(n− 1),

where c2 is another constant. Notice that we could write

T(n) = T(n− 1) + c2 = T(n− 2) + c2 + c2 = T(n− 2) + 2c2.
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Continue this process of writing the left-hand-side of the recurrence in
terms of previous recursive calls to power until you can write T(n) in
terms of any previous call to power, say the k-th.

We then conclude that the big-oh runtime for power is .

Example 7: Let’s determine the runtime complexity of the following (im-
proved) C++ function power that computes xn, where both x and n are
integers and n is a power of 2.

long power (long x, long n)

if (n==0) return 1;

if (n==1) return x;

if ( (n % 2) == 0)

return power(x*x, n/2);

else

return x * power(x*x, n/2);

As with the previous example, we need to define a recurrence relation for
the runtime of consecutive calls to the recursive function power. Initially,
we have T(0) = c1 and T(1) = c2, for constants c1 and c2. From the code,
we have the recurrence relation

T(n) = T(n/2) + c3,
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where c3 is yet another constant. Notice that we could write

T(n) = T(n/2) + c3 = T(n/4) + c3 + c3 = T(n/4) + 2c3.

Continue this process of writing the left-hand-side of the recurrence in
terms of previous recursive calls to power until you can write T(n) in
terms of any previous call to power, say the k-th.

We then conclude that the big-oh runtime for the modified power function
is .
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8 Graph Theory

8.1 Introduction

Definition: Let V be a finite nonempty set and E ⊂ V×V. The pair (V, E)
is called a directed graph on V or a digraph on V. : V (the vertex set) is
the set of vertices or nodes. E (the edge set) is the set of directed edges
or area. We define the graph G by G = (V, E). If the edges in E need no
direction, then G is called an undirected graph.

a b

c

d e

f

In the graph above we have, V = {a, b, c, d, e, f } and E = {{a, c}, {a, b}, {a, d}, {d, e},
{a, f }, { f , e}, {a, e}, {b, c}}.

An example of a directed graph is given below:

a b

cd

e

Here, we have V = {a, b, c, d, e} and E = {(a, a), (a, b), (a, d), (b, c)}. Given
edge (b, c), vertex b is the origin or source vertex and vertex c is called the
the terminus or terminating vertex. The edge (a, a) is a loop, and vertex
e (which has no incident edges) is called an isolated vertex.
In some cases, an undirected graph is used as a more compact way to
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describe a directed graph.

Example 1: The directed graph on the left is recast as an undirected graph
on the right:

a b

cd

a b

cd

Notice that {a, b} (an edge in the undirected graph) is equivalent to {(a, b), (b, a)}
(the corresponding edge in the directed graph). Regarding loops, we can
write {a, a} = (a, a). Generally, we assume a graph is undirected (if not
specified) and if the graph has no loops, we refer to it as being loop-free.

Definition: Let x, y be two vertices in an undirected graph, G = (V, E),
with x and y not necessarily distinct. An x-y walk in G is a loop-free
alternating sequence:

x = x0, e1, x1, e2, x2, e3, . . . en−1, xn−1, en, xn = y ,

with ei = {xi−1, xi}, 1 ≤ i ≤ n. The length of the walk is the number of
edges traversed (n edges). If n = 0, we considered it a trivial walk.

Definition: Any x-y walk, where x = y and n > 1 is a closed walk;
otherwise it is an open walk.

Example 2: Consider the 6-vertex undirected graph below:

a
b

c

d
e

f

Possible walks in this graph include:

1. The a-b walk of length 6: {a, b}, {b, d}, {d, c}, {c, e} {e, d}, {d, b}

2. The b- f walk of length 5: b→ c→ d→ e→ c→ f
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3. The f -a walk of length 4: { f , c}, {c, e}, {e, d}, {d, a}

4. The closed walk b-b: {b, c}, {c, d}, {d, b}

Definition: Let x-y be a walk in the undirected graph G = (V, E).

a. If no edge in x-y walk is repeated, then x-y walk is called an x-y trail.

b. A closed x-x trail is called a circuit. We will assume all circuits of
interest have at least one edge.

c. If no vertex of an x-y walk occurs more than once, then walk is called
an x-y path. When x = y, the closed path is called a cycle.

Example 3: Let’s return to the same undirected graph we had in Example
2:

a
b

c

d
e

f

• Is the b- f walk from above a trail?

• Is that same b- f walk a path?

• Is {a, b}, {b, d}, {d, c}, {c, e}, {e, d}, {d, a} a circuit? Is it a
cycle?

• Are all the cycles b-b, c-c, d-d with more than 2 vertices also circuits?

Summary:
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Repeated Vertices Repeated Edges Open Closed Name
y y y n Open Walk
y y n y Closed Walk
y n y n Trail
y n n y Circuit
n n y n Path
n n n y Cycle

Theorem Let G = (V, E) be an undirected graph with a, b ∈ V. If ∃ a
trail in G from a to b, then there is a path in G from a to b. Consider the
4-vertex undirected graph below:

a
b

c
d

Here, we have the trail a→ c→ d→ a→ b.

Definition (Connected Graph): Let G = (V, E) be an undirected graph.
We say that G is connected if there is a path between any two distinct
vertices of G. If G is not connected, then G is disconnected.

Consider the 7-vertex (undirected) disconnected graph below that has two
connected components:

a

bc

d

e
g

f

In the graph, we see the complete vertex set V = {a, b, c, d, e, f , g} and
two vertex subsets V1 = {a, b, c, d} and V2 = {e, f , g}. The correspond-
ing edge sets for V1 and V2 are E1 = {{a, b}, {a, c}, {a, d}, {b, d}} and
E2 = {{e, g}, { f , g}}, respectively.

Definition (Disconnected Graph): An undirected graph G = (V, E) is

101



8. Graph Theory

disconnected if and only if V can be partitioned into at least two sub-
sets V1, V2 of V such that there is no edge in E of the form (x,y), where
x ∈ V1 and y ∈ V2. Similarly, a graph is connected if and only if it has only
one component. The number of components of G = (V, E) is denoted by
K(G).
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Example 4: Below are three undirected graphs with either 1 or 2 compo-
nents:

K(G) = 1 K(G) = 2 K(G) = 2

Definition (Multigraph): Assume V is finite and nonempty. (V, E) deter-
mines a multigraph of G with vertex set V and edge set E if form some
x, y ∈ V, there there are two or more edges in E of the form (x,y) for
a directed multigraph ({x, y} for an undirected multigraph). Below is an
example multigraph:

a

b

c

d

e

Example 5: Consider a model for a security system of a department store
in which the cashiers are vertices and the (unblocked) aisles are edges
in an undirected graph. Our goal is to place security guards at certain
locations so that the each cashier will have a guard or be only one aisle
away from a security guard. What is the smallest number of guards to
hire? Three are shown (in boxes) below. Where should others go?

a b c

d e f g

h i j k
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Example 6: Consider the following highway system that connects seven
differents towns: a, b, c, d, e, f , g:

Highway Connections
I-22 a to c passing through b
I-33 c to d then passes through b and continues to f
I-44 d to a through e
I-55 f to b passing through g
I-66 g to d

a. Construct the corresponding directed graph:

b. List paths from town g to town a (no repeat vertices).

c. What is the smallest number of highway segments that would have
to be closed down to disrupt travel from town b to town d?
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d. Is there a c-c (visit all towns once) cycle?

e. Is it possible to start at some town and drive over each highway seg-
ment exactly once? You may visit any town more than once and not
return where you started?

8.2 Subgraphs

Before we get into subgraphs, let’s look over a couple key definitions.
Let’s say x and y are two vertices of a graph. A path between x and y
describes a motion from x to y along edges of the graph.

Following this, a subpath is a portion of this path between x and y. For ex-
ample, the path (C, D, E) is a subpath of (A, B, C, D, E, F). Keep in mind
that any path is its own subpath; however, we call it an improper subpath
of itself. All other nonempty subpaths are called proper subpaths.

Given this definition, you could probably intuit what we mean by sub-
graph. This gets a little tricky, but for the most part you can go along
with your intuition. Since graphs are comprised of two sets, vertices and
edges, a subgraph G′ of a graph G could involve a subset of either or both
of these sets.

Definition: Let G = (V, E) be a graph of any kind: directed, directed
multigraph, or undirected. G′ = (V ′, E′) is a subgraph of G if ∅ 6= V ′ ⊆ V,
E′ ⊆ E, and every edge e = {v1, v2} ∈ E′ satisfies v1, v2 ∈ V ′.
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Definition (in English): A subgraph of G is created by removing zero or
more vertices and all edges that include the removed vertices. Addition-
ally, more edges may then be removed.

Two subtypes of subgraphs are an induced subgraph and a spanning
subgraph:

Let U be the set of vertices in a subgraph of G = (V, E). If ∅ 6= U ⊆ V,
the subgraph of G induced by U, notated as 〈U〉, is the graph whose ver-
tex set is U and whose set of edges is comprised of all edges of the form
(x, y) ∈ E or {x, y} ∈ E for directed and undirected graphs, respectively.
What this means is that you only remove edges which correspond to the
vertices that you remove.

Let G = (V, E) be a graph and G1 = (V1, E1) be a subgraph of G. If V1 = V
and E1 ⊆ E, i.e. no vertices are removed from G, only edges, then G is a
spanning subgraph.

Let Gn denote a subgraph of G. Notice some of the properties of the fol-
lowing graph and the corresponding subgraphs. Are some of these span-
ning graphs? How about induced graphs? Hint: find out what the sets of
vertices and edges are for G and compare that to the sets of G1, G2, and G3.

a

b

c

d

e a

b

c

d

b

c

d

e a

b

c

d

e

G G1

G2 G3
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Example 1: How many spanning subgraphs does the following graph
have?

a
b

c
d

Definition (Induced Subgraph): Let G = (V, E) and a subgraph of G
denoted by G − v has the vertex set V1 = V − {v} and edge set E1 ⊆ E
where E1 contains all edges in E except those incident with vertex v. We
that G− v is the subgraph induced by V1.
Example 2: Here, we show two subgraphs of the 6-vertex graph G =

(V, E) when either a vertex (c) or an edge ({c, d}) is removed. Is G2 an
induced subgraph?

ab

c

d
f

g

h

G : ab

d
f

g

h

G1 = G− c :
V1 = V − {c}

ab

c

d f

g

h

G2 :
E2 = E− {{c, d}}
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Definition (Complete Graph): Let V be a set of n vertices. The complete
graph on V, denoted by Kn, is a loop-free undirected graph such that for
all a, b ∈ V, a 6= b, there is an edge {a, b} ∈ E, i.e. every vertex is connected
to all others by an edge.

Example 3: Here are K1 through K4. Can you draw K5?

K1: a

K2: a b

K3: a

b c

K4: a b

c d

Definition: (Complement Graph): Let G = (V, E) be a loop-free undi-
rected graph where n = |V|. The complement of G, denoted by G, is the
subgraph of Kn consisting of all n vertices of G and all edges e = {v1, v2} /∈
E that satisfy v1, v2 ∈ V. If G = Kn then G = ∅, i.e. G is a null graph.

Example 4: A 4-vertex graph G and its complement G:

G: a

b

c

d

G: a b

cd
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Definition (Graph Isomorphism): Let G1 = (V1, E1) and G2 = (V2, E2),
where G1 and G2 are undirected graphs. A function f : V1 → V2 is a graph
isomorphism if

a. f is 1-to-1 and onto, and

b. ∀ a, b ∈ V1, {a, b} ∈ E1 if and only if { f (a), f (b)} ∈ E2.

We say G1 and G2 are isomorphic if and only if both conditions are true.

Example 5: Suppose we define f (a) = w, f (b) = x, f (c) = y, and
f (d) = z. Then, ∀ {a, b} ∈ E1, ∃ { f (a), f (b)} ∈ E2). Hence, f is a a graph
isomorphism.

a b

c d

w x

y z

Example 6: For the 4-vertex graphs below, suppose g(m) = r, g(n) = s,
g(p) = t and g(q) = u. Is g a graph isomorphism?

m n

p q

r s

t u
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Example 7: Are the two 6-vertex graphs below isomorphic? The answer
can be reached by considering the alternative question of whether or not
you can find a circuit in one graph but not the other?

a

b c

d

e fG1:

u

v w

x y zG2:

Example 8: The generation of subgraphs can be extremely helpful for
solving puzzles or games such as Instant Insanity created for Parker Bros.
in 1967 by Franz Owen Arm Bruster. In this game you have 4 cubes, each
with 6 slides and each side has one of four possible colors: red (R), white
(W), blue (B), and yellow (Y). The object of the game is to stack the cubes
in such a way so that all four colors appear on each side of the column (of
the cube stack). This is similar to Rubik’s Cube.
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Let’s see if we can determine the proper stacking of the folowing cubes:

Y
Cube 1: W R Y W

B

R
Cube 2: B B W Y

Y

R
Cube 3: R B Y B

W

W
Cube 4: W R B Y

W

We will start by drawing a 4-vertex and 12-edge graph in which each edge
represents a pair of opposite faces (sides) of a cube. Edges are labelled ac-
cording to the cube that owns the corresponding faces.

At each vertex of the graph, the number of edges incident reflects the num-
ber of faces on the 4 cubes that have that color. Loops count for 2 faces.
So, the graph reveals red faces, white faces, blue faces, and

yellow faces.
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With the 4 cubes stacked in a column, we examine two opposite sides of
the column and seek 4 edges in the graph where each label appears once.
(Each color must appear twice as an endpoint/vertex of the 4 edges.)

Goal: Can we find a similar set of edges representing the other pair of
opposite sides of the column? If so, we have the solution. We need to pro-
duce two subgraphs, one for each pair of opposite sides of the column of
cubes in which all 4 colors are showing. The two subgraphs cannot share
any edges. Draw the subgraphs and the arrangement of cubes that solve
the puzzle.
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8.3 Vertex Degree

Definition (Vertex Degree) Let G be an undirected graph or multigraph.
For each vertex v of G, the degree of v or deg(v) is the number of edges in
G that are incident with v. A loop at vertex v is considered as 2 incident
edges for v.

Example 1: The degrees of each vertex in the following 8-node graph are
provided below the graph. A vertex such as h that has degree 1 is called
a pendant vertex.

a
b

c
d

e

f g h

Vertex Degree
a 1

b 2

c 4

d 2

e 0

f 2

g 2

h 1

Theorem If G = (V, E) is an undirected graph or multigraph then ∑
v∈v

deg(v) =

2|E|.
Corollary For any undirected graph or multigraph, the number of ver-
tices of odd degree must be even.

Definition (Regular Graph) If G = (V, E) is an undirected graph or multi-
graph and each vertex v ∈ V has the same degree, we call G a regular
graph. If deg(v) = k∀v ∈ V, we call G a k-regular graph.
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Question Can we have a 4-regular graph with 10 edges?

a
b

c

de

Question Can we have a 4-regular graph with 15 edges? . Here,
we would have 2|E| = 30 = ∑ deg(v) = 4|v|.

8.4 Hypercube Architecture

The hypercube processor architecture (grid) can be represented by graphs.
Below are simple 2× 4 (left) and 3× 3 (right) grid designs:

1 2 3 4

5 6 7 8

1 2 3

4 5 6

7 8 9

The problem with these simple (processor) grid designs is that they do
not scale, i.e., the paths between nodes increase in length as you add
more nodes (processors). We want the communication cost between any
nodes in the grid to be bounded.

Definition (Hypercube): A hypercube is a loop-free connected and undirected
graph with 2n vertices, denoted by Qn. Below are the first five hypercube
graphs. Notice that with Q2, the longest path is 2 and that the binary la-
bels of connected nodes only differ by one bit.
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Q0 Q1 Q2

0 1 00 10

01 11

Q3 Q4

000

001

010

011

100

101

110

111

8.5 Famous Problems

Example 1: The Seven Bridges of Königsberg problem (18th Century) in-
volves a city walk from a starting position that crosses every bridge once
before returning to the starting position.

A B C

D

Question Does a circuit exist in this graph? . We note that deg(a) =
deg(c) = deg(d) = 3 and deg(b) = 5.

Definition (Euler Circuit): Let G = (V,E) be an undirected graph or multi-
graph with no isolated vertices. Then, G has an Euler circuit if ∃ a circuit
in G that traverses every edge in G once.
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Theorem: If G = (V, E) is an undirected graph or multigraph with no isolated vertices,
then G has an Euler circuit if and only if G is connected and every vertex
in G has even degree.

Corollary: Under the same assumptions for G, we can construct an Euler
trail in G if and only if G is connected and has exactly 2 vertices of odd degree.
This explains why the Seven Bridges Problem is not solvable.

Definition (In-degree, Out-degree): Let G = (V, E) be a directed graph
or multigraph, for each v ∈ V:

a. the incoming or in-degree of v is the number of edges that are incident
to v (denoted by id(v)).

b. the outgoing or out-degree of v is the number of edges that are inci-
dent from v (denoted by od(v)).

Theorem: Let G = (V, E) be a directed graph or multigraph with no
isolated vertices. Then G has a directed Euler circuit if and only if G is
connected and id(v) = od(v) ∀v ∈ V.

Example 2: Let’s consider a famous telecommunications problem posed
by C.L. Liu in which an electronic drum is rotated clockwise to generate
3-digit binary codes.
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Question: As the drum rotates clockwise, can we represent all 8 binary
representations (000 through 111)?

Answer: Construct a directed graph G = (V, E), where V = {00, 01, 10, 11}
and a E is constructed as follows. If b1b2, b2b3 ∈ V, draw edge (b1b2, b2, b3).

01 10

11

00

So, is the graph connected?
Is id(v) = od(v) ∀v ∈ V?
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By a previous theorem, ∃ a directed Euler circuit:

10 00 00 01 10 01 11 11

Example 3: We can count the number of walks between any two nodes
of a graph through the use of adjacency and incidence matrices. Let’s
assume |E| = n and |V| = k for a graph G = (V, E). Define the adjacency
matrix A = (aij)k×k by aij = 1 if {vi, vj} ∈ E, and aij = 0 otherwise. Define
the incidence matrix I = (bij)n×k by bij = 1 if vi is a vertex on edge j, and
bij = 0 otherwise.

a. A =

v1 v2 v3 v4 v5

v1 0 1 1 0 1

v2 1 0 1 1 1

v3 1 1 0 1 1

v4 0 1 1 0 1

v5 1 1 1 1 0

b. I =

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11

v1 1 1

v2 0 0

v3 1 0

v4 0 0

v5 0 1

c. Calculate A2 = A× A (i.e., matrix multiplication). What do entries in
A2 reveal about the graph G?

Answer: For 1 ≤ i, j ≤ n, the (i,j) entry of the matrix A2 counts the
number of distinct walks of length 2 between vertices i and j.
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8.6 Planar Graphs

Definition (planar graph): A graph (or multigraph) G is planar if G can
be drawn in the plane with edges intersecting only at the vertices. We can
also say that such a graph G is an embedding of G in the plane. Let’s
draw a few planar and nonplanar graphs.

Notice that we can draw both a planar and nonplanar K4 graph.

But can we embed K5 in the plane? Let’s try below. Recall that K5 is a
graph with five vertices in which every vertex is connected to every other
vertex.

So, apparently K5 is nonplanar.

119



8. Graph Theory

8.7 Bipartite Graphs

Definition (bi-partite graph): G = (V, E) is called bi-partite if V = V1∪V2

with V1 ∩ V2 = ∅ and every edge of G is of the form {a,b} with a ∈ V1

and b ∈ V2. In other words, G4 is bi-partite if the vertices are divided into
two sets V1 and V2 and each edge goes from a vertex in V1 to a vertex
in V2. The two sets V1 and V2 cannot contain the same vertex, but when
combined must contain every vertex of the graph G.

Qn is bi-partite ∀n ≥ 1. Let’s draw the first three below:

Q1 :
V1 = {0}
V2 = {1}

Q2 :
V1 = {00, 11}
V2 = {01, 10}

Q3 :
V1 = {000, 011, 101, 110}
V2 = {001, 010, 100, 111}
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Example 1: Consider the following graph with V1 = {a, b} and V2 =

{c, d, e} and determine whether or not it is bi-partite. If you add the edges
{b, d} and {b, c}, is the graph complete?

Example 2: Suppose we wanted to hook up three houses to heating, water,
and electricity utilities. Can we give each house all three utilities without
overlapping lines? Let V1 = {h1, h2, h3} and V2 = {u1, u2, u3}.

Notice that we cannot connect h2 to u2 without crossing lines. This graph
is a K3,3 nonplanar graph.

8.8 Elementary Subdivision and Homeomorphic Graphs

Definition: If G = (V, E) is loop-free and undirected with E 6= ∅ then an
elementary subdivision of G is a graph obtained from G by removing an
edge e = {u, w} and adding new edges {u, v} and {v, w} to G− e, where
the new vertex v 6∈ V.
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Definition (homeomorphic graph): Suppose G1 and G2 are two loop-free,
undirected graphs with G1 = (V1, E1) and G2 = (V2, E2). We say that G1

and G2 are homeomorphic if they are isomorphic or can be obtained from
the same loop-free undirected graph H by a sequence of elementary sub-
divisions.

Let’s draw three homeomorphic graphs below.

Theorem (Kuratowski’s): A graph is nonplanar if and only if it contains a
subgraph that is homeomorphic to either K5 or K3,3 (circa 1930). A classic
example is the Petersen graph that we will draw below.
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Example 1: We will create a subgraph of the Petersen graph that is home-
omorphic to K3,3 to prove that it is indeed nonplanar.

(1) Begin with a bipartite subgraph V1 = {j, a, d} & V2 = {e, f , b}.

(2) Break {b, d} and add {d, c}, {c, b}.

(3) Break {b, j} and add {b, g}, {g, j}.
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8. Graph Theory

(4) Break { f , j} and add { f , h}, {h, j}.

(5) Break {d, f } and add {d, i}, {i, f }, {g, i}, {h, c}.

Our final graph (although it may be a bit disguised) is the Petersen graph.
So, by Kuratowski’s Theorem, we conclude that the Petersen graph is non-
planar since is has a subgraph homeomorphic to K3,3.

Example 2: Let’s take a 3-regular graph G that is isomorphic to Q3 and
then draw its 4-regular complement (G).
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8.9. Euler’s Theorem

We can find a subgraph of G say H that is homeomorphic to K5 and con-
clude that G is nonplanar.

Euler revealed that you can count the number of regions determined by a
planar connected graph (or multigraph) and that this number is consis-
tent for all planar embeddings of the graph.

8.9 Euler’s Theorem

Theorem (Euler’s): Let G = (V, E) be a connected, planar graph or multi-
graph with | V |= v and | E |= e. Also, let r be the number of regions in
the plane determined by a planar embedding of G and one of the infinite
regions. Then,

v− e + r = 2 .
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8. Graph Theory

Definition (Degree of Region): The degree of the region R in a planar
embedding of a planar graph or multigraph is the number of edges tra-
versed in a shortest closed walk about the edges on boundary of R.

Example 1: The sum of degrees is conserved for all planar embeddings of
a planar graph. Consider the 4-region case below:

Region Degree of Region
R1 5

R2 3

R3 3

R4 7

R5 4

R6 3

R7 5

R8 6

Corollary: Let G = (V, E) be a loop-free connected, undirected planar
graph with | V |= v, | E |= e > 2 and r regions. Then,

3r ≤ 2e and e ≤ 3v− 6 .

Example 2: K5 is a loop-free connected graph with 10 edges and 5 vertices.
That is, 3v− 6 = 3(5)− 6 = 15− 6 = 9 but e = 10 6≤ 9 so K5 is not planar.

Dual graphs:

The following is the process of constructing a dual graph (Gd) for a given
planar embedding G = (V, E). Let V = {a, b, c, d, e, f }.

1) Place a point (vertex) inside each region (include infinite region).

2) For each edge shared by two regions, draw an edge connecting the
inside vertices.

3) For an edge traversed twice in a closed walk about the edge of a
region, draw a loop at the vertex for this region.
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8.9. Euler’s Theorem

Example 3: A loop in G can produce a pendant vertex in Gd if the loop
contains no other vertex/edge in G. The degree of a vertex in Gd is the
number of edges on boundary of a closed walk about the region on G that
contains the vertex.

Definition (cut-set) : Let G = (V, E) be an undirected graph or multi-
graph. A subset E′ of E is called a cut-set of G if by removing the edges
in E′ from G, we have K(G) < K(G′) where G′ = (V, E− E′) and K( ) is
the number of components.

But, when we remove from E any proper subset E” of E′ we have K(G) =

K(G”) for G” = (V, E− E”). So, the cut-set is a minimal disconnecting set
of edges for a given connected graph.

Example 4: Here, we illustrate a bridge or a 1-edge cut-set.

cut-sets of G′ K(G′)
{a, b}, {a, c} 2

{a, b}, {c, d} 2

{e, h}, { f , h}, {g, h} 2

{d, f } 2
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Example 5: Consider a 5-region map (and ignore the infinite region) and
suppose we want to color the five regions so that two countries/states
that share a common border are colored differently. Given G = (V, E)
construct Gd so that any two connected vertices are colored differently
(this is the infamous Four-Color Theorem for planar graphs).

Example 6: Consider a 9-switching network that controls a light source.
Suppose we want to construct a dual network so that the light in this
new network will be on whenever the light in the original network would
be off. We start by creating a (planar) graph G whereby each switch is
represented by an edge and connected edges reflect connected switches.
We also add an edge between the original terminals of the network. The
graph G′ is then created from G whereby each vertex of G′ represents a
region of G. Finally, we construct G′d and label edges in G′d in a way that
reflects the edges traversed in G for a given region. The desired network
is obtained by closing all the switches in G′d that would be open in G.
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9 Hamiltonian Paths and cycles

9.1 Definitions

Hamiltonian components were named after the individual who popular-
ized them - the Irish mathematician William Rowan Hamilton. His claim
to fame is the icosian game. A game where the player’s goal is to find a
cycle along the edges of a dodecahedron such that every vertex is visited
only once and the player ends the path where they started the path. This
describes the Hamiltonian cycle (sometimes called the Hamiltonian cir-
cuit).

Definition (Hamiltonian cycle): A Hamiltonian cycle is a cycle that visits
each vertex of a graph only once (except for the vertex that is both the
start and end, which is visited twice) - a Hamiltonian graph is a graph or
multi-graph with 3 or more vertices that has a Hamiltonian cycle.

Definition (Hamiltonian path): A Hamiltonian path is a path in a graph
or multigraph that contains each vertex (only once). It does not have to
return to the beginning vertex, it only has to reach every vertex once.

Observation:
There are no formal conditions that will guarantee that a graph will con-
tain a Hamiltonian cycle or define a Hamiltonian path, thus proving the
existence of a Hamiltonian cycle and the its Hamiltonian path is a prime
example of an NP-Complete problem (covered in COSC 312).
Fun Facts:

• If a graph has a Hamiltonian cycle, you can delete one of the edges
in the cycle and obtain a Hamiltonian path.

• A graph can have a Hamiltonian path but not a Hamiltonian cycle.

• If a graph has a Hamiltonian cycle, then it must be connected.
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Example 1: Does the graph below contain a Hamiltonian cycle?

00

01

10

11

Example 2: Does the graph below contain a Hamiltonian cycle?

000

001

010

011

100

101

110

111

Example 3: Does the graph below contain a Hamiltonian cycle?

a b c

d e f

g h i

9.2 Properties

Properties of Graphs with Hamiltonian cycles (assume V is the vertex
set):

• If a graph has a Hamiltonian cycle, then for all v ∈ V, degree(v) ≥ 2.

• If a ∈ V and degree(a) = 2, then the two edges that are incident with
vertex a must appear in every Hamiltonian cycle of the graph.
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9. Hamiltonian Paths and cycles

• If a ∈ V and degree(a) > 2 and you pass through vertex a when
constructing a Hamiltonian cycle, any unused edges incident with a
can be removed from further consideration.

• It is impossible to create a Hamiltonian cycle for the subgraph of a
graph unless the subgraph contains all the vertices of the original
graph.

Example 4: Let’s draw a connected graph G = (V, E) with

V = {a, b, c, d, e, f , g, h, i, j}

and |V| = 10. Can we determine if the graph has a Hamiltonian path?

Bi-Partite Labeling Strategy: We can relabel the vertices in the above
graph as a series of alternating letters or numbers where no adjacent ver-
tex has the same label (suppose we use x and y) and obtain a bi-partite
graph.
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Does the bi-partitie graph have a Hamiltonian path?

Does this graph have an odd cycle?
A bi-partite graph cannot have a cycle of odd length (that is, a closed path
with an odd number of edges). In the above graph, we should have 5 x’s
and 5 y’s but we end up with 4 x’s and 6 y’s, thus the graph cannot have
a Hamiltonian path or cycle.

Observation: If you are given a connected graph labeled in a bi-partite
fashion and it has an odd cycle then it does NOT contain a Hamiltonian
path and thus no Hamiltonian cycle.

Note: You can use relabeling to prove a graph does not contain a Hamil-
tonian path, but you cannot use relabeling to prove that it does contain
a Hamiltonian path. Bi-Partite graphs without odd cycles are not guaran-
teed to contain Hamiltonian paths.

9.3 Tournament Graphs

Theorem (Tournament): Let K+
n be a complete directed graph. So K+

n has
n vertices and for each distinct pair of vertices x and y exactly one of the
edges (x, y) or (y, x) is in K+

n . We call K+
n a tournament and it is guaran-

teed to contain a directed Hamiltonian path.
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9. Hamiltonian Paths and cycles

Example 5: Example of a tournament based on SEC-East with Kentucky
on probation (sorry wildcat fans).

SEC-East Championship Dilemma
Record Teams: G, F, M, S, T, V
3-2 F Beat V, S and M. Lost to T and G
3-2 G Beat F, V and T. Lost to M and S
2-3 M Beat G and S. Lost to F, T and V
3-2 S Beat G, T and V. Lost to M and F
3-2 T Beat F, M and V. Lost to G and S.
1-4 V Beat M. Lost to F, G, S and T.

F G
M

T

S
V

Knowing what we have listed above, is there a way to list the teams in
such a way that the current team has beaten the next? In other words, can
we construct a Hamiltonian path on the directed graph above?

If we can, how many Hamiltonian Paths begin with G? F? T? or S?
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9.4 Useful Theorems and their Corollaries

Theorem (Paths): Let G = (V, E) be a loop-free graph with |V| = n ≥ 2
where n is an integer value. If degree(x)+ degree(y) ≥ n− 1 for all x, y ∈ V
where x 6= y then G must have a Hamiltonian path.

Corollary: Again, let G = (V, E) be a loop-free graph with |V| = n ≥ 2
where n is an integer value. If degree(v) ≥ (n− 1)/2 for all v ∈ V, then G
has a Hamiltonian path.

Theorem (Cycles): (Ore, 1960) Let G = (V, E) be a loop free undirected
graph with |V| = n ≥ 3 where the value n is an integer. If degree(x) +
degree(y) ≥ n for all non-adjacent x, y ∈ V then G must have a Hamilto-
nian cycle.

Corollaries: Again, let G = (V, E) be a loop free undirected graph with
|V| = n ≥ 3 where n is an integer value.

1. If degree(v) ≥ n/2 for all v ∈ V, then G has a Hamiltonian cycle.

2. If |E| ≥ (n−1
2 ) + 2 then G has a Hamiltonian cycle.

9.5 Graph Coloring

Problem – For the storage of chemical compounds in a company’s ware-
house, some acids and bases cannot be near each other. Suppose the ware-
house is partitioned into separate areas so incompatible chemicals can be
separated. How many compartments are need?

Model: For 25 chemical compounds define V = {C1, C2, ..., C25}. For all
1 ≤ i < j ≤ 25, draw edge {Ci, Cj} if Ci and Cj must be stored separately.
Construct G = (V, E) as an undirected graph.

Definition (Coloring): If G = (V, E), a proper coloring of G is a color/labeling
of the vertices of G so that if {a, b} ∈ E, then a and b are colored/labeled
differently. The Chromatic number of G, denoted χ(G) is the minimum
number of colors needed to properly cover G.
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Some history:

• Determining χ(G) was studied around 1850 by Francis Guthrie and
later by Augustine DeMorgan in 1852.

• Determining the smallest number of colors needed to color a planar
graph was called the ”Four Color Problem.” It was claimed to be
answered by Arthur Cayley in 1879.

• Sir Alfred Kempe provided a formal proof, but had an error discov-
ered by Percy Heawood (1861-1955). The proof stood for a decade.

• In 1976, Professor Ken Appel and Wolfgang Haken confirmed χ(G) =

4 for planar graphs by computer.

Example 1: Find a subgraph isomorphic to Kn to determine χ(G).

a 1

b 2

c 1

d 2

e 1

f 2

g 3

h 3

We see that the subgraph using only vertices a, b, and g is isomorphic to
K3 and it is easy to show that ∀n ≥ 1, χ(Kn) = n. Hence, χ(G) = 3 for
the 8-vertex graph G above. If G is the Petersen graph, then χ(G) = 3 as
well.
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9.5. Graph Coloring

Example 2: Suppose we wanted to determine χ(G) for the 10-vertex graph
G below.

a b c d
e

f g

h i j

Notice that for U = {b, f , h, i}, the induced subgraph < U > is isomorphic
to K4 for χ(G) ≥ χ(K4) = 4. The following coloring will suffice:

red green white blue
b, j a, d, i e, h, g c, f

Is there a formal method to determine χ(G)?

Assume G = (V, E) is undirected and λ colors are available for coloring
the vertices in V.

Definition (Chromatic Polynomial): P(G, λ) is the chromatic polynomial
of G that indicates how many different ways G can be properly col-
ored using at most λ colors. A coloring can be thought of as a function
f : V → {1, 2, . . . , λ} where f (u) 6= f (v) for adjacent vertices u, v ∈ V.

Example 1: For G = (V, E), |V| = n, E = ∅ (only isolated vertices),
P(G, λ) = λn.

Example 2: For G = Kn, P(G, λ) = (λ)(λ− 1)(λ− 2) · · · (λ− n+ 1) ≡ λ(n).

Example 3: If λ < χ(G), then P(G, λ) = .
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Example 4: Determine P(G, λ) for the 4-vertex graph below.

a

bc

d
λ

λ− 1λ− 1

λ− 1

Example 5: Determine P(G, λ) for the 5-vertex graph below.

a

b

cd

e
λ

λ− 1

λ− 1λ− 1

λ− 1
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Upshot: If G is defined by a path on n vertices, then P(G, λ) = (λ)(λ−
1)n−1. If G has k components G1, G2, ..., Gk, then P(G, λ) = P(G1, λ) ×
P(G2, λ)× · · · × P(Gk, λ).

Definition (Ge): Let G = (V, E) be an undirected connected graph and for
e = {a, b} ∈ E, let Ge be the subgraph of G obtained by deleting e from
G without removing vertices a and b. Now define G′e as another subgraph
of G obtained by coalescing (merging) vertices a and b from Ge.

a

b

c

d

e

a

b

c

d

a=b c

d

G Ge G′e

Theorem (Decomposition of Chromatic Polynomials): Let G = (V, E) be
a connected graph with e ∈ E. Then

P(Ge, λ) = P(G, λ) + P(G′e, λ) .

Example 6: Let’s use the above theorem to determine P(G, λ) for the 4-
vertex graph G below.

a b

c d

e =
a b

c d

a b=d

c

-
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Example 7: Let’s apply the Decomposition Theorem one more time to de-
termine P(G, λ) for the 5-vertex graph G below.

v

w x

y z

2

1
4

32

v

w x

y z

v

w x

y z

w x=v

y z

= -

e

v

w x

y z

w x

y z

= - 2
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Useful Facts:

1 The constant term in P(G, λ) is always zero.

2 Provided |E| > 0 for G = (V, E), the sum of coefficients in P(G, λ) is
always zero.

Another approach to get P(G, λ) is to add edges toward obtaining a com-
plete graph.

Theorem: Let G = (V, E) with a, b ∈ V but {a, b}= e 6∈ E. Let G+
e denote

the graph obtained from G by adding the edge e ={a, b}. Coalescing the
vertices a and b in G then yields the subgraph G++

e of G. Then,

P(G, λ) = P(G+
e , λ) + P(G++

e , λ) .

Example 8: Use the theorem above to determine P(G, λ) for the 4-vertex
graph G below.

a

b

c

d

a

b

c

d a=b

c

d

= +

2

2

1

3
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Example 9: Let’s revisit the chemical warehouse problem with 7 different
chemicals to store. For all 1 ≤ i ≤ 5, chemical i cannot be stored in the
same compartment as chemical i + 1 or i + 2.

a. Determine the smallest number of storage compartments needed to
store all seven chemicals.

b. Suppose these chemical pairs have to be separated: (1, 4), (2, 5), (2, 6), (3, 6).
How many compartments would be needed then?
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10 Data Clustering Using Graphs

Clustering is a powerful tool in data mining that sorts data into groups
or clusters. Which athletes are similar, which customers might buy simi-
lar products, or what movies are similar are possible applications of data
clustering. We will consider data clustering using undirected graphs and
a little linear algebra (eigenvectors).

Example: Consider the undirected graph G = (V, E) with V = {1, 2, 3, 4, 5, 6, 7}
and

E = { {1, 6}, {1, 4}, {4, 6}, {2, 4}, {2, 5}, {2, 7}, {5, 7}, {3, 5}, {3, 7} }.

Let’s draw the connected graph G defined above:
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To cluster this graph, we will use an eigenvector of what is defined as the
corresponding Laplacian matrix to the graph G. To obtain the Laplacian
matrix, we first create the adjacency matrix A for the graph in which
aij = 1 if there is an edge between vertices i and j; otherwise, aij = 0. So,
for the graph G above, we have

A =



0 0 0 1 0 1 0
0 0 0 1 1 0 1
0 0 0 0 1 0 1
1 1 0 0 0 1 0
0 1 1 0 0 0 1
1 0 0 1 0 0 0
0 1 1 0 1 0 0


.

The next step is to create the diagonal matrix D such that dii is equal to
the ith row sum of A. Therefore, we would obtain

D =



2 0 0 0 0 0 0
0 3 0 0 0 0 0
0 0 2 0 0 0 0
0 0 0 3 0 0 0
0 0 0 0 3 0 0
0 0 0 0 0 2 0
0 0 0 0 0 0 3


.

The Laplacian matrix is defined by L = D − A so that for our graph we
would have

L =



2 0 0 −1 0 −1 0
0 3 0 −1 −1 0 −1
0 0 2 0 −1 0 −1
−1 −1 0 3 0 −1 0

0 −1 −1 0 3 0 0
−1 0 0 −1 0 2 0

0 −1 −1 0 −1 0 3


.
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Miroslav Fiedler discovered the importance of the eigenvector say v2 cor-
responding to the second smallest eigenvalue of the matrix L for data
clustering. Recall from linear algebra (Math 251), an eigenvector or char-
acteristic vector of a linear transformation (or matrix) is a non-zero vector
that changes by only a scalar factor when that linear transformation is ap-
plied to it. In our case, an eigenvector vi of L and corresponding eignvalue
λi satisfy the equation Lvi = λivi. Fielder proved that the vector v2 can be
used to partition the graph into maximally intraconnected (within clus-
ter) components and minimally interconnected (between clusters) compo-
nents. The vector v2 is commonly referred to as the Fiedler vector for the
Laplacian matrix L of graph G.

Use of the Fiedler Vector:
Computing the Fiedler vector for the matrix L above we obtain

v2 =



−0.4801
0.1471
0.4244
−0.3078

0.3482
−0.4801

0.3482


.

We can use the vector v2 to cluster the graph using the signs of each
eigenvector component. Vertices of G corresponding to the elements of
v2 that have the same sign are placed into the same cluster. Hence, in
our example, nodes/vertices 1, 4, and 6 are placed in one cluster and the
remaining nodes/vertices are placed into the other cluster. The min cut
for this partitioning (into two graph components) is simply the edge {2, 4}
of the graph G.

145



10. Data Clustering Using Graphs

Below is a Python 3 script that will compute the v2 vector of the graph G.
The numpy library routine eig is used to compute all 7 eigenvalues and
corresponding eigenvectors of the Laplacian matrix L.

#!/usr/bin/env python3

import numpy as np

# Define the 7 by 7 Laplacian matrix L (by rows) for graph G

A = np.array([[ 2, 0, 0,-1, 0,-1, 0],

[ 0, 3, 0,-1,-1, 0,-1],

[ 0, 0, 2, 0,-1, 0,-1],

[-1,-1, 0, 3, 0,-1, 0],

[ 0,-1,-1, 0, 3, 0,-1],

[-1, 0, 0,-1, 0, 2, 0],

[ 0,-1,-1, 0,-1, 0, 3] ])

# Find the eigenvalues and eigenvectors of L

vals, vecs = np.linalg.eig(A)

# Sort eigenvalues in ascending order (i.e., smallest first)

vecs = vecs[:,np.argsort(vals)]

vals = vals[np.argsort(vals)]

# Print the eigenvector corresponding to the 2nd smallest eigenvalue

# (Python arrays have starting index zero)

for i in range(7) :

print(’\t{:7.4f}’.format(vecs[i,1]))
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11 PageRank Algorithm for Importance Ranking

The PageRank algorithm is commonly used to compute the prestige or im-
portance of vertices (nodes) in the context of Web search. The Web graph
consists of pages (nodes) connected by hyperlinks (edges). The algorithm
uses the random surfing assumption that a user surfing the Web randomly
chooses one of the outgoing links from the current page, or with some
very small probabililty randomly jumps to any of the pages in the Web
graph. The PageRank of a Web page is defined to be the probability of
a random web surfer landing at that page. The PageRank of a node v
recursively depends of the PageRank of other nodes that point to it.

11.1 Normalized Importance

Assume that each node u has out-degree of at least 1 and let

od(u) = ∑
v

A(u, v)

denote the out-degree of node u when A is the adjacency matrix for the
(directed) Web graph. Hence, od(u) is the sum of the elements in row u in
matrix A. Because a random surfer can choose among any of the outgoing
links, if there is a link from page u to page v, then the probability of
visiting v from u is given by 1/od(u).
Starting from an initial probability or PageRank p0(u) for each node such
that

∑
u

p0(u) = 1

we can compute an updated PageRank vector for v as follows:

p(v) = ∑
u

A(u, v)
od(u)

· p(u) = ∑
u

N(u, v)
od(u)

· p(u) = ∑
u

NT(v, u)
od(u)

· p(u) ,

where N is the normalized adjacency matrix of the graph defined by

N(u, v) =
{

1/od(u), i f (u, v) ∈ E;
0, i f (u, v) 6∈ E.

Across all the nodes (pages), we can express the (transposed) PageRank
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11.2. Random Jumps

vector pT by pT = NT p.

11.2 Random Jumps

Random surfing is modeled by the assumption of a small probability that
a user will jump from one node (page) to any of the other nodes in the
graph, even if there are no links between them. You can think of the Web
graph as a (virtual) fully-connected directed graph, with an adjacency
matrix given by Ar = 1n×n that has all entries equal to 1. For this random
surfer matrix (Ar), the outdegree of each node is od(u) = n, and the
probability of jumping from node u to any node v is simply 1/od(u) =

1/n. Thus, if one allows only random jumps from one node to another,
the PageRank can be computed as

p(v) = ∑
u

NT
r (v, u)
od(u)

· p(u) ,

where Nr is the normalized adjacency matrix of the fully-connected Web
graph given as Nr = 1

n Ar = 1
n1n×n. That is, each element of the n × n

matrix Nr is 1/n. As discussed in the previous section, the (transposed)
PageRank vector pT across all the nodes for this case would be given by
pT = NT

r p.

11.3 PageRank

The full PageRank is computed by assuming that with some small proba-
bility, α, a random Web surfer jumps from the current node u to any other
random node v, and with probability 1− α the user follows an existing
link from u to v. So, the final (transposed) PageRank vector is defined by

pT = (1− α)NT p + αNT
r p = ((1− α)NT + αNr)p = MT p ,

where M = (1− α)N + αNr is the combined normalized adjacency matrix.
The PageRank vector can be computed iteratively, starting with an initial
PageRank assignment p0, and updating it in each iteration by pk+1 =

MT pk. One minor problem arises if a node u does not have any outgoing
edges, i.e., when odu(u) = 0. Since there is no outgoing edge from u, the
only choice u has is to simply jump to another random node. Thus, we
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11. PageRank Algorithm for Importance Ranking

need to make sure that if od(u) = 0, then for the row corresponding to u
in M, denoted as Mu, we set α = 1, i.e.,

Mu =

{
Mu i f od(u) > 0,
1
n1T

n i f od(u) = 0,

where 1n is the n-dimensional vector of all ones. We can use the power
iteration method to compute the dominant eigenvector of MT.

Example: Consider the directed Web graph1 G = (V, E) below in which
each vertex represents a distinct webpage and each edge (i, j) represents a
hyperlink from webpage i to webpage j.

1
2

3

4

5

The normalized adjacency matrix N for the Web graph is given by

N =


0 0 0 1 0
0 0 0.5 0 0.5
1 0 0 0 0
0 0.33 0.33 0 0.33
0 1 0 0 0

 .

Since there are n = 5 nodes (pages) in the Web graph, the normalized

1Data Mining and Analysis: Fundamental Concepts and Algorithms, M.J. Zaki and W. Meira Jr., Cambridge Uinversity
Press, 2014.
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random jump adjacency matrix Nr is given by

Nr =


0.2 0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2 0.2

 .

Setting α = 0.1, the combined normalized adjacency matrix M = 0.9N +

0.1Nr is given by

M =


0.02 0.02 0.02 0.92 0.02
0.02 0.02 0.47 0.02 0.47
0.02 0.02 0.02 0.02 0.02
0.02 0.32 0.32 0.02 0.32
0.02 0.92 0.02 0.02 0.02

 .

Computing the dominant (largest) eigenvalue and corresponding eigen-
vector of MT, one can obtain λ = 1 with p = (0.419, 0.546, 0.417, 0.422, 0.417)T.
So for this Web graph, webpage 2 has the highest PageRank value, i.e., the
highest probability that a random user would access that webpage.
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