
CS302 Lecture notes
Binary Search

• James S. Plank
• Directory: /home/plank/cs302/Notes/BinarySearch
• August 23, 2023
• Latest revision: August 24, 2023
• Git Hash: 3e3a04815c02a4bc1523ea82e75e0604202cf082

Reference Material Online / Topcoder / Leetcode Problem(s)

• Binary Search from Wikipedia
• Leetcode.com problem 540: Single Element in a Sorted Array. Detailed writeup, but no solution given.
• Leetcode.com problem 2300: Successful Pairs of Spells and Potions. Detailed writeup, but no solution given.
• Topcoder SRM 721, D1, 250-Pointer (RememberWords). Brief writeup, but no solution given.
• Leetcode.com problem 4: ”Median-Of-Two-Sorted-Arrays”. Detailed writeup, but no solution given. This is a
tough one!

• Leetcode.com problem 1011. Capacity To Ship Packages Within D Days. No writeup or solution -- this one is
similar to ”Koko Eating Bananas” below, plus the Leetcode editorial is unlocked by default, so that can help
if you need it.

• Leetcode.com problem 74. Search a 2D Matrix. Two binary searhes. No writeup or solution.
• Leetcode.com problem 1802. Maximum Value at a Given Index in a Bounded Array. No writeup, but the
Leetcode editorial is unlocked by default, so that can help if you need it.

What do you need to know for the exam?

• How to perform a binary search.
• Its running time.
• How to identify problems as being solvable with binary search.

Overview

Binary search is a very powerful problem-solving technique. The idea is simple. Given a collection of n items and
problem to solve, you solve the problem by throwing away half of the items, and then solving the problem on the
half that you have remaining.

I know that’s a bit vague, but that’s the general principle. The running time is straightforward, too: At each step of
your problem, you’re throwing away half of the items, so after log(n) steps, you’ll be left with one item, and you’re
done.

That means your binary search is generally O(log n), which is smoking fast. I say ”generally”, because sometimes
you need to do extra stuff during a step, and that can increase your overhead.

Conceptually Easy, But Typically Harder

When you go to implement a binary search, you’ll find that your code is often buggy, and you need some inelegant
edge conditions. That’s normal, and you should be ready for it. The reason that I decided to teach binary search
in CS302 (starting 2023) is that every time I had to do a binary search problem in Leetcode, it took extra attention
to detail and extra testing. I have some helpful advice, I believe, in these lecture notes, but experience is always the
best teacher.

A Canoncial Example

Here’s a canonical example. The file txt/words.txt contains a dictionary of 24,853 words, all lower-case, sorted:

1
Copyright © 2023, James S. Plank. All rights reserved.

http://web.eecs.utk.edu/~jplank
https://bitbucket.org/jimplank/cs302_lecture_notes/src/3e3a04815c02a4bc1523ea82e75e0604202cf082/BinarySearch/index.html?at=master
https://en.wikipedia.org/wiki/Binary_search_algorithm
http://web.eecs.utk.edu/~jplank/topcoder-writeups/Leetcode/Single-Element-In-A-Sorted-Array/
http://web.eecs.utk.edu/~jplank/topcoder-writeups/Leetcode/Successful-Pairs-Of-Spells/index.html
http://web.eecs.utk.edu/~jplank/topcoder-writeups/2017/RememberWords/index.html
http://web.eecs.utk.edu/~jplank/topcoder-writeups/Leetcode/Median-Of-Two-Sorted-Arrays/index.html
https://leetcode.com/problems/capacity-to-ship-packages-within-d-days/
https://leetcode.com/problems/search-a-2d-matrix
https://leetcode.com/problems/maximum-value-at-a-given-index-in-a-bounded-array
https://web.eecs.utk.edu/~jplank/plank/classes/cs302/Notes/BinarySearch/txt/words.txt

UNIX> wc txt/words.txt

24853 24853 205393 txt/words.txt # There are 24,853 words

UNIX> head -n 5 txt/words.txt # It looks sorted from the beginning

aaa

aaas

aarhus

aaron

aau

UNIX> tail -n 5 txt/words.txt # And end

zoroastrian

zounds

zucchini

zurich

zygote

UNIX> sort txt/words.txt > tmp.txt # We demonstrate that it is indeed sorted.

UNIX> diff txt/words.txt tmp.txt

UNIX>

Let’s write a program, in src/dict bsearch.cpp. It’s a straightforward binary search -- please read the comments
inline for explanation.

/* src/dict_bsearch.cpp. This reads a dictionary of words from a file into a vector of

strings.

It sorts the vector , if not already sorted , and then it reads words from standard input

It uses binary search to determine whether each of these words is in the dictionary. */

#include <vector >

#include <algorithm >

#include <iostream >

#include <fstream >

using namespace std;

class Bsearch {

public:

void Create(const string &filename); // Create the vector from the file.

bool Find(const string &word) const; // Return whether a word is in the vector.

protected:

vector <string > words;

};

/* Create () is straightforward -- it reads each words into a vector , and while doing so,

determines whether the vector is sorted. If it is not , then it is sorted at the

end of Create (). */

void Bsearch :: Create(const string &filename)

{

ifstream fin;

bool sorted;

string w;

sorted = true;

fin.open(filename.c_str());

if (fin.fail()) throw (string) "Could not open " + filename;

2
Copyright © 2023, James S. Plank. All rights reserved.

https://web.eecs.utk.edu/~jplank/plank/classes/cs302/Notes/BinarySearch/src/dict_bsearch.cpp

while (fin >> w) {

if (words.size() > 0 && w < words[words.size() -1]) sorted = false;

words.push_back(w);

}

if (! sorted) sort(words.begin (), words.end());

}

/* Here’s the binary search. It keeps track of three variables:

l = the index of the smallest word that we are considering.

h = the index of the largest word that we are considering.

m = the middle of l and h

It iterates by looking at words[m], and using that value to either return ,

discard the lower half of elements or discard the higher half of elements.

*/

bool Bsearch ::Find(const string &word) const

{

int l, h, m;

if (words.size() == 0) return false;

l = 0; // Initially , we consider the entire vector

h = words.size() - 1;

while (l <= h) {

m = (l + h) / 2;

// printf ("l:%d(%s) m:%d(%s) h:%d(%s)\n",

// l, words[l].c_str (), m, words[m].c_str (), h, words[h].c_str ());

if (words[m] == word) return true;

if (words[m] > word) h = m-1; // Throw away the top half

if (words[m] < word) l = m+1; // Throw away the bottom half

}

return false;

}

/* The main() is straightfoward -- create the dictionary from the file , then find each

word on standard input. */

/* I’m not including it here in the lecture notes. */

Let’s test by uncommenting the printf() statement inside Find(), and doing some small examples:

3
Copyright © 2023, James S. Plank. All rights reserved.

UNIX> wc txt/words-12.txt # My dictionary has 12 words

12 12 99 txt/words-12.txt

UNIX> cat txt/words-12.txt

attention

debtor

efficient

goldenseal

highwaymen

hogan

moth

rebutted

salsify

stud

wakeful

woodpeck

I’m going to find attention, debtor, efficient and hogan, which are all there:

UNIX> echo attention | bin/dict_bsearch txt/words-12.txt y

l:0(attention) m:5(hogan) h:11(woodpeck)

l:0(attention) m:2(efficient) h:4(highwaymen)

l:0(attention) m:0(attention) h:1(debtor)

attention: found

Found: 1 of 1

UNIX> echo debtor | bin/dict_bsearch txt/words-12.txt y

l:0(attention) m:5(hogan) h:11(woodpeck)

l:0(attention) m:2(efficient) h:4(highwaymen)

l:0(attention) m:0(attention) h:1(debtor)

l:1(debtor) m:1(debtor) h:1(debtor)

debtor: found

Found: 1 of 1

UNIX> echo efficient | bin/dict_bsearch txt/words-12.txt y

l:0(attention) m:5(hogan) h:11(woodpeck)

l:0(attention) m:2(efficient) h:4(highwaymen)

efficient: found

Found: 1 of 1

UNIX> echo hogan | bin/dict_bsearch txt/words-12.txt y

l:0(attention) m:5(hogan) h:11(woodpeck)

hogan: found

Found: 1 of 1

Now aaa, zzz and mmm, which are not there:

UNIX> echo aaa | bin/dict_bsearch txt/words-12.txt y

l:0(attention) m:5(hogan) h:11(woodpeck)

l:0(attention) m:2(efficient) h:4(highwaymen)

l:0(attention) m:0(attention) h:1(debtor)

aaa: not-found

Found: 0 of 1

4
Copyright © 2023, James S. Plank. All rights reserved.

UNIX> echo zzz | bin/dict_bsearch txt/words-12.txt y

l:0(attention) m:5(hogan) h:11(woodpeck)

l:6(moth) m:8(salsify) h:11(woodpeck)

l:9(stud) m:10(wakeful) h:11(woodpeck)

l:11(woodpeck) m:11(woodpeck) h:11(woodpeck)

zzz: not-found

Found: 0 of 1

UNIX> echo mmm | bin/dict_bsearch txt/words-12.txt y

l:0(attention) m:5(hogan) h:11(woodpeck)

l:6(moth) m:8(salsify) h:11(woodpeck)

l:6(moth) m:6(moth) h:7(rebutted)

mmm: not-found

Found: 0 of 1

UNIX>

It’s a good idea to go over the examples above and look at the indices, to see how it hones the search space at each
step. Let’s look at a bigger example to see what happens when it tries to find ”jjj” in txt/words.txt. I’m going to
have that print statement print (h− l) at each step, so you can see how it roughly halves at each step:

UNIX> echo jjj | bin/dict_bsearch txt/words.txt y

h-l:24852 l:0(aaa) m:12426(jewelry) h:24852(zygote)

h-l:12425 l:12427(jewett) m:18639(refractory) h:24852(zygote)

h-l:6211 l:12427(jewett) m:15532(nightfall) h:18638(refractometer)

h-l:3104 l:12427(jewett) m:13979(mambo) h:15531(nightdress)

h-l:1551 l:12427(jewett) m:13202(legendary) h:13978(maltreat)

h-l:774 l:12427(jewett) m:12814(knapsack) h:13201(legend)

h-l:386 l:12427(jewett) m:12620(kamchatka) h:12813(knapp)

h-l:192 l:12427(jewett) m:12523(joyous) h:12619(kalmuk)

h-l:95 l:12427(jewett) m:12474(johns) h:12522(joyful)

h-l:46 l:12427(jewett) m:12450(joanna) h:12473(johnny)

h-l:22 l:12427(jewett) m:12438(jimenez) h:12449(joan)

h-l:10 l:12439(jimmie) m:12444(jitterbug) h:12449(joan)

h-l:4 l:12445(jitterbugger) m:12447(jittery) h:12449(joan)

h-l:1 l:12448(jive) m:12448(jive) h:12449(joan)

h-l:0 l:12449(joan) m:12449(joan) h:12449(joan)

jjj: not-found

Found: 0 of 1

UNIX>

How does binary search compare with sets and unordered sets?

If I asked you to write the program above without binary search, but instead using the standard template library, I
hope you would consider the following:

• A set. Creating the set is O(n log n), where n is the number of words in the dictionary, and then performing
the Finds is O(m log n), where m is the number of Finds.

• An unordered set. This employs a hash table under the hood -- creating it is O(n) and performing the Finds
is O(m).

That argues for the unordered set. Where does binary search fit it? Well, creating the vector is O(n) if it’s sorted,
and O(n log n) if it’s not. And performing the Finds is O(m log n). In other words, identical to the set.

5
Copyright © 2023, James S. Plank. All rights reserved.

I have implemented the set and unordered set code in src/dict set.cpp and src/dict uset.cpp respectively. To test, I
have created txt/test.txt, which has 12,000 words from txt/words.txt, and 12,000 words that are not in txt/words.txt.
Let’s see how they compare:

UNIX> make clean

rm -f bin/*

UNIX> make bin/dict_bsearch bin/dict_set bin/dict_uset

g++ -o bin/dict_bsearch -Wall -Wextra -std=c++11 src/dict_bsearch.cpp

g++ -o bin/dict_set -Wall -Wextra -std=c++11 src/dict_set.cpp

g++ -o bin/dict_uset -Wall -Wextra -std=c++11 src/dict_uset.cpp

UNIX> time bin/dict_bsearch txt/words.txt < txt/test.txt n

Found: 12000 of 24000

real 0m0.151s

user 0m0.147s

sys 0m0.003s

UNIX> time bin/dict_set txt/words.txt < txt/test.txt n

Found: 12000 of 24000

real 0m0.226s

user 0m0.220s

sys 0m0.004s

UNIX> time bin/dict_uset txt/words.txt < txt/test.txt n

Found: 12000 of 24000

real 0m0.089s

user 0m0.084s

sys 0m0.003s

UNIX>

Predictably, the unordered set was the fastest. The binary search is significantly faster than the set, even though
they have the same big-O. Part of that is because we don’t sort the words (they are already sorted), but the significant
savings actually come from memory. The set uses a tree data structure, which has a lot of pointers and extra memory.
The binary search simply uses the vector.

Keep that in mind.

Using start/size rather than low/high

Rather than using low/high (or left-right) indices, you can specify the part of the vector under review using:

• Start: This is the index of the first element of the vector that we are testing.
• Size: This is the size of the region of the vector that we are testing.

After spending quite a bit of time implementing binary searches using both types of information, I have concluded
that I like keeping track of start and size better than low and high. The main reason is that so long as you
make sure that size is greater than zero, then words[start] is always valid. I find that comforting. Here’s the
implementation of Find() using start/size. The code is in src/dict bs ss.cpp:

6
Copyright © 2023, James S. Plank. All rights reserved.

https://web.eecs.utk.edu/~jplank/plank/classes/cs302/Notes/BinarySearch/src/dict_set.cpp
https://web.eecs.utk.edu/~jplank/plank/classes/cs302/Notes/BinarySearch/src/dict_uset.cpp
https://web.eecs.utk.edu/~jplank/plank/classes/cs302/Notes/BinarySearch/txt/test.txt
https://web.eecs.utk.edu/~jplank/plank/classes/cs302/Notes/BinarySearch/txt/words.txt
https://web.eecs.utk.edu/~jplank/plank/classes/cs302/Notes/BinarySearch/txt/words.txt
https://web.eecs.utk.edu/~jplank/plank/classes/cs302/Notes/BinarySearch/src/dict_bs_ss.cpp

bool Bsearch ::Find(const string &word) const

{

int start , size , mid;

start = 0;

size = words.size();

if (size == 0) return false;

while (size > 1) {

mid = start + size /2;

/* I guess I like how this code translates logically: */

if (words[mid] > word) { /* If word is not in the second half ... */

size /= 2; /* Discard the second half. */

} else {

start += size /2; /* Otherwise discard the first half. */

size -= size /2; /* Note this handles even and odd sizes correctly. */

}

}

return (words[start] == word);

}

It’s faster than the previous code (it was about 0.151 rather than 0.114 here):

UNIX> time bin/dict_bs_ss txt/words.txt < txt/test.txt n

Found: 12000 of 24000

real 0m0.114s.

user 0m0.110s.

sys 0m0.003s

UNIX>

Plus it has another advantage of the previous code -- if the vector contains duplicates, this will always return the
last of the duplicates.

Taking a look at that visually

I find this graphic really helpful when thinking about binary searches:

Your goal is to either eliminate the light blue region or the pink region. Sometimes that’s pretty natural, as in the
code above. Sometimes less so. The next section is an example.

7
Copyright © 2023, James S. Plank. All rights reserved.

Less obvious uses of binary search -- optimization

When you’re trying to spot a binary search solution to a problem, see if you can frame the problem in the following
way:

Let me define a function f(v) whose answer is ”yes/no”. Let’s suppose that f(v) is O(n). Moreover, suppose that
there is a value vopt, such that for all v < vopt, f(v) is ”yes”, and for all v > vopt, f(v) is ”no”. Then we can use
binary search on v to fine vopt. The running time is going to be O(n log v).

A good example of this is Leetcode Medium problem #875: ”Koko Eating Bananas”. Here’s the problem on Leetcode
if you want to try it yourself: https://leetcode.com/problems/koko-eating-bananas/.

Here’s a summary of the problem:

• You are given a vector of integers called piles. Its values are between 1 and 109, and its length is between 1
and 10, 000.

• You are given a value h, which is between piles.size() and 109.
• You are to derive a value k, which works as follows.
• At each timestep, you may reduce the value of a pile by k. You may not reduce the value below zero, and you
may not reduce the value of more than one pile in a timestep.

• What is the minimum value of k that allows you to reduce all of the piles to zero in at most h timesteps.

Let’s work through the Leetcode examples:

• Example 1: piles = [3, 6, 7, 11], h=8.

The answer is 4:

◦ 1 timestep for piles[0] = 3.
◦ 2 timesteps for piles[1] = 6.
◦ 2 timesteps for piles[2] = 7.
◦ 3 timesteps for piles[3] = 11.

That’s 8 timesteps. You’ll note that if you set k to 3, then it will take you 10 timesteps.

• Example 2: piles = [30, 11, 23, 4, 20], h=5.

The answer is 30, because you have to reduce each pile to zero in a single timestep.

• Example 3: piles = [30, 11, 23, 4, 20], h=6.

The answer is 23. That way, you get piles 1 through 4 in one timestep, and pile 0 in two tiemsteps.

This is a typical topcoder/leetcode problem, because your first inclination is to think in terms how you break up
the individual piles. However, resist that temptation. Instead, focus on the observations which point toward binary
search:

1. If you set k to zero, you’ll never succeed.
2. If you set k to the maximum pile size, you’ll finish in exactly piles.size() timesteps. In other words, youll

always succeed.
3. If you have a value of k and you increase it, then the number of timesteps will stay the same or be reduced.
4. If you have a value of k and you decreases it, then the number of timesteps will stay the same or be increased.

This gives you all of the conditions that you need for binary search. Let f(k) = ”yes” if you can succeed with a
value of k, and ”no” if you cannot. You know that kopt. is going to be greater than zero and less than or equal to
the maximum pile size. So use binary search to find kopt.

8
Copyright © 2023, James S. Plank. All rights reserved.

https://leetcode.com/problems/koko-eating-bananas/

Here are the broad strokes:

• Test the middle element for k. If you can succeed, discard the higher half. If you can’t, discard the lower half.
• An important thing is that you know that your answer is in the region that you’re considering. Thus, the
binary search works.

It’s actually a little more complex than that. Let’s return to the picture above:

Suppose we set mid to start+size/2 and then we test to see mid is a successful value of k. If it is, then we can
throw out all of the values greater than mid. That’s not what we want. Instead, set mid to start+size/2-1 --
that’s the last element in the blue region above. If it is successful, then we can throw out the pink region. If it’s not,
then we can throw out the blue region. That’s just what we want!

If you want to work on this yourself, you can start with the skeleton program in src/Koko Skeleton.cpp. This sets
up a driver program and a skeleton (incorrect) implementation of the Leetcode method ”minEatingSpeed”. If we
compile and run, it always returns zero:

UNIX> g++ src/Koko_Skeleton.cpp

UNIX> echo 3 6 7 11 8 | ./a.out # Example 1

0

UNIX> echo 30 11 23 4 20 5 | ./a.out # Example 2

0

UNIX>

Below is the commented answer, using binary search. It’s in src/Koko Solution.cpp. Here’s the minEatingSpeed
method:

int Solution :: minEatingSpeed(vector <int >& piles , int h)

{

int start , size , maxpile , mid;

int i;

long long timesteps , for_pile;

/* Calculate the maximum pile size. */

maxpile = piles [0];

for (i = 0; i < piles.size(); i++) if (piles[i] > maxpile) maxpile = piles[i];

/* We want our range to start at one and end at maxpile (including maxpile).

So we set start to 1 and size to maxpile. Remember size means that start+size

is one past the last element in our region. */

start = 1;

9
Copyright © 2023, James S. Plank. All rights reserved.

https://web.eecs.utk.edu/~jplank/plank/classes/cs302/Notes/BinarySearch/src/Koko_Skeleton.cpp
https://web.eecs.utk.edu/~jplank/plank/classes/cs302/Notes/BinarySearch/src/Koko_Solution.cpp

while (size > 1) {

/* You want to test the highest value in the first half of the values (

the last value in the blue region of the picture. */

mid = start + size/2 - 1;

/* Timesteps is the total timesteps if k is set to mid. */

timesteps = 0;

for (i = 0; i < piles.size(); i++) {

for_pile = piles[i] / mid;

if (piles[i]%mid != 0) for_pile ++;

timesteps += for_pile;

}

// printf (" Start: %d. Size: %d Mid: %d. Timesteps: %lld\n", start , size , mid ,

timesteps);

/* If timesteps is too big , then you know that the answer

is in the second half of the range. You can throw out the

first half. */

if (timesteps > h) {

start += size /2;

size -= size /2;

/* Otherwise , the answer is in the first half of the range , so toss out the second

half. */

} else {

size = size /2;

}

}

return start;

}

(If you care, that solution was pretty much smack at 50% in terms of speed on Leetcode).

Another Optimization Problem

This is Leetcode problem 2616: ”Minimize the Maximum Difference of Pairs.” Here’s the link: https://leetcode
.com/problems/minimize-the-maximum-difference-of-pairs/.

Here’s my description:

• You are given a vector of integers between 0 and 109, whose size is between 1 and 100, 000.
• You are also given an integer p between 0 and half the vector’s length.
• Your goal is to find p distinct pairs of numbers in the vector, whose maximum difference is minimized.
• The vector may contain duplicates -- if there are d duplicate values of the number x, then you can use x up to
d times in your pairs.

• Return the minimum maximum difference. (ha ha).

10
Copyright © 2023, James S. Plank. All rights reserved.

https://leetcode.com/problems/minimize-the-maximum-difference-of-pairs/
https://leetcode.com/problems/minimize-the-maximum-difference-of-pairs/

Examples help. Let’s use their example one:

nums = [10, 1, 2, 7, 1, 3]

p = 2

So we need to find two pairs and minimize the maximum difference within a pair. The answer here is 1 -- {(1, 1), (2, 3)}.
The two differences are 0 and 1, so the maximum difference is 1. It’s the best you can do, so that’s the answer.

To formulate this as a binary search problem, let’s define f(v) as follows:

• f(v) is ”yes” if you can find p distinct pairs whose differences are all less than or equal to v.
• f(v) is ”no” if you cannot find p distinct pairs whose differences are all less than or equal to v.

It should be clear that there is a vopt here. Moreover, we know that there is a value of f for which f(v) is ”yes” --
it’s the maximum value of the vector.

So -- continuing with the problem formualation: If you can implement f(v) in O(n) time (where n is the size of the
vector), then you can use binary search to find vopt.

So we need to implement f(v). To do that we can sort the vector, and the proceed greedily. Look at nums[0]. If
(nums[1] − nums[0]) ≤ k, then we count it as a pair and move onto nums[2]. Otherwise, we ignore nums[0] and
move onto nums[1]. You can prove to yourself that if there are p pairs, then this algorithm will find it. I won’t do
that formally, but you should give it some thought to convince yourself that this is true.

Let’s code it up. The Leetcode class/method is:

class Solution {

public:

int minimizeMax(vector <int > &nums , int p);

};

In src/Min The Max Skeleton.cpp I have a skeleton that reads in the array and p and then calls minimizeMax().
As always, it compiles and runs, but not correctly:

UNIX> make bin/Min_The_Max_Skeleton

g++ -o bin/Min_The_Max_Skeleton -Wall -Wextra -std=c++11 src/Min_The_Max_Skeleton.cpp

UNIX> echo 10 1 2 7 1 3 2 | bin/Min_The_Max_Skeleton

0

UNIX>

We’ll program incrementally. First, we’ll write f(v), which returns whether you can find p pairs, each of whose
difference is ≤ v. It’s in src/Min The Max Write F.cpp:

11
Copyright © 2023, James S. Plank. All rights reserved.

https://web.eecs.utk.edu/~jplank/plank/classes/cs302/Notes/BinarySearch/src/Min_The_Max_Skeleton.cpp
https://web.eecs.utk.edu/~jplank/plank/classes/cs302/Notes/BinarySearch/src/Min_The_Max_Write_F.cpp

class Solution {

public:

int minimizeMax(vector <int > &nums , int p);

bool f(int v, const vector <int > &nums , int p);

};

/* f(v, nums , p) returns true if there are p pairs in nums whose differences is less than

or equal to p. */

bool Solution ::f(int v, const vector <int > &nums , int p)

{

size_t i;

int np;

np = 0;

for (i = 0; i < nums.size() && np < p; i++) {

if (i < nums.size() -1 && nums[i+1] - nums[i] <= v) {

np++;

i++;

}

}

return (np >= p);

}

/* This just lets us test f(). */

int Solution :: minimizeMax(vector <int > &nums , int p)

{

int i;

sort(nums.begin (), nums.end());

for (i = 0; i < 10; i++) printf("%d %s\n", i, (f(i, nums , p)) ? "yes" : "no");

return 0;

}

Let’s test using nums from the first example.

UNIX> make bin/Min_The_Max_Write_F

g++ -o bin/Min_The_Max_Write_F -Wall -Wextra -std=c++11 src/Min_The_Max_Write_F.cpp

bash: bin/Min_The_Max_Skeleton: No such file or directory

UNIX> echo 10 1 2 7 1 3 2 | bin/Min_The_Max_Write_F

0 no

1 yes # This is the correct answer

2 yes

3 yes

4 yes

5 yes

6 yes

7 yes

8 yes

9 yes

0

12
Copyright © 2023, James S. Plank. All rights reserved.

UNIX> echo 10 1 2 7 1 3 3 | bin/Min_The_Max_Write_F

0 no

1 no

2 no

3 yes # As is this -- (10,7), (1,2), (1,3) -- among other solutions

4 yes

5 yes

6 yes

7 yes

8 yes

9 yes

0

UNIX>

Now we write the binary search. Let’s consult the picture -- should we test the last entry of the blue section, or the
first entry of the pink section?

Well, if we test the last entry of the blue section, then a ”yes” answer lets us discard the pink section, and a ”no”
answer lets us discard the blue section. That’s what we want! Here’s the code: (src/Min The Max Solution.cpp)

13
Copyright © 2023, James S. Plank. All rights reserved.

https://web.eecs.utk.edu/~jplank/plank/classes/cs302/Notes/BinarySearch/src/Min_The_Max_Solution.cpp

int Solution :: minimizeMax(vector <int > &nums , int p)

{

size_t i;

int middle;

int max;

int start , size;

sort(nums.begin (), nums.end());

/* Calculate the maximum value in nums. */

max = nums [0];

for (i = 1; i < nums.size(); i++) if (nums[i] > max) max = nums[i];

start = 0;

size = max +1; // Since 0 is a valid answer , and we want size to be one past the

// highest valid answer , we set size to max + 1.

while (size > 1) {

middle = start + size/2 - 1;

if (f(middle , nums , p)) {

size = size /2;

} else {

start += size /2;

size -= size /2;

}

}

return start;

}

Copyright (c) 2023, James S. Plank

14
Copyright © 2023, James S. Plank. All rights reserved.

