
CS302 Lecture notes
Sprintf, Sscanf, C strings

• James S. Plank
• Directory: /home/plank/cs302/Notes/Sprintf
• August, 2015
• Latest revision: Wed Aug 23 15:23:35 EDT 2023
• Git Hash: 5940e159838836d9c2e971e46b3e3b36a28d04c5

Topcoder Practice Problems

• EllysTimeMachine, the 250-point problem from TCO 2016, Round 1A. You can do this one extremely quickly
if you use sscanf() and sprintf().

Into the sewers

This lecture drags you through some pretty detailed information about C++ and C-style strings. I urge you to walk
through these lecture notes pretty slowly, and run the code yourself on your own machine. I know you’re going to
glaze over pretty quickly, thinking something like the following:

”I’m never going to use this stuff. I can use cin and cout and stringstreams, so why would I want to bother
with pointers and arrays, ampersands and null characters? Plank’s just old and doesn’t know how to do modern
programming.”

Now that we’ve acknowledged what you’re thinking, I want you to resist the temptation to skip this stuff and instead
work through it. Yes, I am old. Trust me -- sprintf() and sscanf() are really nice alernatives to stringstreams.
Plus, understanding computer memory is one of the most important keys to being a good programmer. So buckle
up, and spend an hour or two with these lecture notes.

Introduction - C Style Strings

Sprintf() and sscanf() are string conversion procedures from the C Stdio Library. The functionality that you get
with sprintf() and sscanf() is handled in C++ with stringstreams. However, I find sprintf() and sscanf() to be
easier to use, which is why I want you to learn them.

Both of them work with ”C style” strings. These are arrays of bytes (of type char). The convention with C-style
strings is that the array contains printable characters, terminated with the null character (which you specify as ’\0’
-- Its actual value is zero). Note, I say that this is a ”convention.” That’s because it is up to anyone using and
manipulating C-style strings to make sure that the array of bytes is in the proper format – it is not automatically
handled for you like strings are in C++.

Slight digression: I assume that you’ve had this information before, but a little review never hurts -- printable
characters in C and C++ are simply bytes, which are integers between -128 and 127. The data type is char.
You can print them as integers by using printf(”%d”, ...). When you print them as characters, you use
printf(”%c”, ...). There is a mapping of integers to characters called ”ASCII.” You don’t need to care what
this mapping is, except you should know that:

• Characters ’0’ through ’9’ are contiguous integers, and are smaller than ’A’-’Z’ and ’a’-’z’.
• Characters ’A’ through ’Z’ are contiguous integers, and are smaller than ’a’-’z’.
• Characters ’a’ through ’z’ are contiguous integers.

When you print a string in C or C++, you are printing an array of bytes using the ASCII mapping. With
printf(”%s”, s) in particular, you are passing a pointer to bytes, and printf() prints the character associated
with each byte in succession, until it reaches the null character, specified as ’\0’, whose integer value is zero.

1
Copyright © 2023, James S. Plank. All rights reserved.

http://web.eecs.utk.edu/~jplank
https://bitbucket.org/jimplank/cs302_lecture_notes/src/5940e159838836d9c2e971e46b3e3b36a28d04c5/Sprintf/index.html?at=master
http://web.eecs.utk.edu/~jplank/topcoder-writeups/2016/EllysTimeMachine/index.html

When you access a C-style string, you use a pointer to its first character. This pointer will be of type ”char *.”
Alternatively, you can use an array of characters (an array, not a C++ vector) that you allocate yourself, such as,
for example ”char buf[10],” which is an array of 10 characters. Let’s look at an example, in src/c str.cpp:

/* Line 1 */ #include <string >

/* Line 2 */ #include <cstdio >

/* Line 3 */ #include <cstdlib >

/* Line 4 */ #include <iostream >

/* Line 5 */ using namespace std;

/* Line 6 */

/* Line 7 */ int main()

/* Line 8 */ {

/* Line 9 */ char buf [10];

/* Line 10 */ char *str;

/* Line 11 */ int i;

/* Line 12 */ string cpps;

/* Line 13 */

/* Line 14 */ str = buf;

/* Line 15 */

/* Line 16 */ for (i = 0; i < 6; i++) buf[i] = ’A’+i;

/* Line 17 */ buf[i] = ’\0’;

/* Line 18 */

/* Line 19 */ printf("When I print buf with percent s, I get: %s\n", buf);

/* Line 20 */ printf("When I print str with percent s, I get: %s\n", str);

/* Line 21 */

/* Line 22 */ cpps = buf;

/* Line 23 */ str [0] = ’X’;

/* Line 24 */ cpps [1] = ’Y’;

/* Line 25 */

/* Line 26 */ cout << "This is cpps: " << cpps << endl;

/* Line 27 */ cout << "This is str: " << str << endl;

/* Line 28 */ cout << "This is buf: " << buf << endl;

/* Line 29 */ return 0;

/* Line 30 */ }

On lines 9 and 10 of this program, I declare an array of ten characters called buf, and a character pointer called str.
The very first action that I perform (on line 14) is have str point to the first byte of buf. This looks as follows:

In other words, I have allocated ten bytes, and I may access them in two ways -- via the variable buf and via the
variable str. Next, (lines 16 - 20), I set the first five characters to ’A’, ’B’, ’C’, ’D’, ’E’ and ’F’. I set the next
character to the null character, and I print out both buf and str. At this point, they are:

2
Copyright © 2023, James S. Plank. All rights reserved.

https://web.eecs.utk.edu/~jplank/plank/classes/cs302/Notes/Sprintf/src/c_str.cpp

I can see this when I run the program by taking a look at the first two lines of output:

UNIX> make clean

rm -f a.out bin/*

UNIX> make bin/c_str

g++ -std=c++11 -Wall -Wextra -o bin/c_str src/c_str.cpp

UNIX> bin/c_str | head -n 2

When I print buf with percent s, I get: ABCDEF

When I print str with percent s, I get: ABCDEF

UNIX>

Next, (line 22), I assign the c++ string cpps to equal buf. This creates a new C++ string which is a heavier-weight
data structure, because it contains more information than simply an array of bytes. It copies the bytes of buf into
its own data structure. Here is a picture after line 22:

Finally, (lines 23) I change the first byte of str to ’X’. Because str is pointing to the same bytes as buf, that changes
the first character of buf. I also change the second byte of cpps to ’Y’. Although this looks like the previous
statement, it is a bit different, because the C++ string class overloads the bracket operators so that it finds the
underlying bytes of the string, and changes the second one. Here’s what they look like afterward:

This explains the last three lines of output, where I print out cpps, str and buf.

UNIX> bin/c_str | tail -n 3

This is cpps: AYCDEF

This is str: XBCDEF

This is buf: XBCDEF

UNIX>

Make sure you understand every line of this program, and in particular, why it is that str and buf utilize the same
string buffer, and cpps utilizes a different string.

C++ strings

Strings in C++ are very nicely handled – you may manipulate them, allocate them, read them and write them quite
seamlessly. You may view a C++ string as a class that has, at its core, a C style string. It’s something like the
following (this is not exactly right, but for the purposes of this explanation, it’s good enough):

3
Copyright © 2023, James S. Plank. All rights reserved.

class string {

public:

unsigned long long size();

char *c_str();

...

private:

char *underyling_string;

unsigned long Size;

...

};

When you create a string, for example:

int i;

string s;

for (i = ’A’; i < ’F’; i++) s.push_back(i);

Then the string structure does some work to allocate memory for its string buffer, and when the loop is done, you’ll
have Size equaling 5, and underlying string will point to a buffer of at least six bytes, the first 5 of which are ’A’,
’B’, ’C’, ’D’ and ’E’, and the last of which is ’\0’. We can view it as follows:

You’ll note, in the drawing above, the amount of memory that underlying string is pointing to is greater than the
six characters required to store ’A’ through ’E’ and the null character. That can happen, and it will be different from
machine to machine. However, let’s go with this example. Let’s suppose you do two more ”push back” commands:

s.push_back(’F’);

s.push_back(’G’);

Our string now looks as follows:

Now, suppose you do one more ”push back”:

s.push_back(’H’);

The pointer to the buffer that holds the string has run out of memory. So, what the string class does is allocate a
new buffer, and copy the string there. The state of our string will look something like this:

What I’m trying to convey here is that the old buffer is discarded and a new one is used. The old buffer will be
released to the memory management system to be reused, and the string uses the new buffer until it fills up.

4
Copyright © 2023, James S. Plank. All rights reserved.

The c str() method of a C++ string

The c str() method of a C++ string returns a const char *. This is a pointer to the first byte of the C-style string
that is held in the class of the C++ string. The keyword ”const” means that you should not try to modify this
string, and if you do, the compiler will exit with an error. We can get around this, by the way, which we’ll do later.
As I intimate above, a C++ string will keep filling in its underlying C-style string until it runs out of room, at which
point it allocates a new string. We can prove that with the following program, in src/buffer changes.cpp:

#include <string >

#include <cstdio >

#include <cstdlib >

#include <iostream >

using namespace std;

/* This program demonstrates that as you call push_back (), the string class ’

underlying string buffer will change. This is because the buffer "fills up",

and then the string implementation allocates a bigger buffer and copies

the string over to it. If you try to maintain a pointer to this old

buffer , the pointer will become "stale" when the buffer changes. */

int main()

{

string s;

const char *cs;

int i;

cs = s.c_str(); // Store the pointer to the buffer in cs

for (i = 1; i <= 10000; i++) {

s.push_back(’A’);

if (s.c_str() != cs) { // Print when the pointer changes.

printf("The underlying buffer changed at size: %d\n", i);

cs = s.c_str ();

}

}

return 0;

}

This keeps adding characters to a C++ string, s, and it notes when storage for the underlying C-style string changes.
Check it out as it runs (on my linux box):

5
Copyright © 2023, James S. Plank. All rights reserved.

https://web.eecs.utk.edu/~jplank/plank/classes/cs302/Notes/Sprintf/src/buffer_changes.cpp

UNIX> make bin/buffer_changes

g++ -std=c++11 -Wall -Wextra -o bin/buffer_changes src/buffer_changes.cpp

UNIX> bin/buffer_changes

The underlying buffer changed at size: 1

The underlying buffer changed at size: 2

The underlying buffer changed at size: 3

The underlying buffer changed at size: 5

The underlying buffer changed at size: 9

The underlying buffer changed at size: 17

The underlying buffer changed at size: 33

The underlying buffer changed at size: 65

The underlying buffer changed at size: 129

The underlying buffer changed at size: 257

The underlying buffer changed at size: 513

The underlying buffer changed at size: 1025

The underlying buffer changed at size: 2049

The underlying buffer changed at size: 8136

UNIX>

I think we can all figure out that the underlying buffers are allocated to be powers of two, although that last line
is pretty odd. These things change from machine to machine – on my macbook in 2018, I got the following output
from this program:

The underlying buffer changed at size: 23

The underlying buffer changed at size: 48

The underlying buffer changed at size: 96

The underlying buffer changed at size: 192

The underlying buffer changed at size: 384

The underlying buffer changed at size: 768

The underlying buffer changed at size: 1536

The underlying buffer changed at size: 3072

The underlying buffer changed at size: 6144

One thing that you should get out of this program is that you should not store c str() pointers if you change the
C++ string, because the underlying buffer can change.

Don’t mess with the bytes that c str() returns, #1.

The const keyword typically keeps you out of danger, but you can get around it. The following program should
show you why you shouldn’t do that. Here, I ”typecast” the return value of c str() to a char * that doesn’t have
the ”const” keyword. Then I modify the C-style string so that it puts the null character after the first character.
Then I print out the C++ string’s size, plus I print out the string using both printf() and cout. The program is in
src/bad c str.cpp:

6
Copyright © 2023, James S. Plank. All rights reserved.

https://web.eecs.utk.edu/~jplank/plank/classes/cs302/Notes/Sprintf/src/bad_c_str.cpp

#include <string >

#include <cstdio >

#include <cstdlib >

#include <iostream >

using namespace std;

/* This program shows what happens when you mess with

the pointer returnd by the c_str() method of strings.

You end up corrupting the string structure. */

int main()

{

string s;

char *cs;

/* Here you set cs to point to the bytes of a string ,

and you set the character at index one to the

NULL character. */

s = "ABCDE";

cs = (char *) s.c_str ();

cs[1] = ’\0’;

/* You’ll note that it still reports that the size

is 5, even though when you print it, its size is one. */

cout << "After setting index 1 to the NULL character .\n";

cout << s.size() << endl;

cout << s << endl;

printf("%s\n", s.c_str ());

/* When you call push_back on s, it indeed pushes the character

’F’ on the end of the string -- you’ll see that the string

is still corrupted. */

s.push_back(’F’);

cout << endl << "After calling s.push_back(’F ’):\n";

cout << s.size() << endl;

cout << s << endl;

printf("%s\n", s.c_str ());

return 0;

}

When I run it (again on my mac), you see some pretty odd behavior:

7
Copyright © 2023, James S. Plank. All rights reserved.

UNIX> make bin/bad_c_str

g++ -std=c++11 -Wall -Wextra -o bin/bad_c_str src/bad_c_str.cpp

UNIX> bin/bad_c_str

After setting index 1 to the NULL character.

5

ACDE

A

After calling s.push_back(’F’):

6

ACDEF

A

UNIX>

You’ll note that putting the null character into s turns the C style string into a one-character string, but the C++
string retains its size, and when you print it out with cout, it basically skips over the null character and keeps
printing. When you print out the c str() with printf(), it stops at the null character.

In other words, this is a program itching with bugs. Don’t do what I’ve done here; however, it’s good to see what’s
happening.

sprintf()

Sprintf() does what printf() does, only it takes as its first argument a pointer to a buffer of bytes, and instead of
printing to the screen, it puts its output into that buffer. Here’s a very simple example of putting 5 numbers into a
string (src/sprintf1.cpp):

#include <string >

#include <cstdio >

#include <cstdlib >

#include <iostream >

using namespace std;

/* This program uses sprintf () to put five numbers into a string. */

int main()

{

char buf [100];

string s;

int i;

cin >> i;

sprintf(buf , "%d %d %d %d %d", i, i+1, i+2, i+3, i+4);

s = buf;

cout << s << endl;

return 0;

}

8
Copyright © 2023, James S. Plank. All rights reserved.

https://web.eecs.utk.edu/~jplank/plank/classes/cs302/Notes/Sprintf/src/sprintf1.cpp

When we run it, we see that the string s is set to ”1 2 3 4 5”:

UNIX> make bin/sprintf1

g++ -std=c++11 -Wall -Wextra -o bin/sprintf1 src/sprintf1.cpp

UNIX> echo 1 | bin/sprintf1

1 2 3 4 5

UNIX>

You want to make sure that you allocate a buffer that is big enough. If you don’t, the sprintf() call will overrun
memory, and when you do that, odd things may happen. Here’s an example, in src/sprintf2.cpp

#include <string >

#include <cstdio >

#include <cstdlib >

#include <iostream >

using namespace std;

/* This program makes a big mistake , and does not allocate enough

memory for the sprintf () call. In particular , buf2 is only

eight bytes , and the sprintf () call writes at least 10 bytes ,

and maybe more. */

int main()

{

char buf1 [8];

char buf2 [8];

char buf3 [8];

int i;

buf1 [0] = ’\0’;

buf2 [0] = ’\0’;

buf3 [0] = ’\0’;

cin >> i;

printf("Before :\n");

printf("buf1: %s\n", buf1);

printf("buf2: %s\n", buf2);

printf("buf3: %s\n", buf3);

/* Here is where sprintf () overruns the bytes allocated for buf2. */

sprintf(buf2 , "%d %d %d %d %d", i, i+1, i+2, i+3, i+4);

printf("After :\n");

printf("buf1: %s\n", buf1);

printf("buf2: %s\n", buf2);

printf("buf3: %s\n", buf3);

return 0;

}

9
Copyright © 2023, James S. Plank. All rights reserved.

https://web.eecs.utk.edu/~jplank/plank/classes/cs302/Notes/Sprintf/src/sprintf2.cpp

If you’re lucky, you get a seg-fault. Here, you’re not so lucky (again, this is on my mac – results of this program
will differ from machine to machine). The weird behavior is buf1. Look at what it is before and after the sprintf()
statement:

UNIX> make bin/sprintf2

g++ -std=c++11 -Wall -Wextra -o bin/sprintf2 src/sprintf2.cpp

src/sprintf2.cpp:32:3: warning: ’sprintf’ will always overflow; destination buffer has size 8, but

format string expands to at least 10 [-Wfortify-source]

sprintf(buf2, "%d %d %d %d %d", i, i+1, i+2, i+3, i+4);

^

1 warning generated.

UNIX> echo 10 | bin/sprintf2

Before:

buf1:

buf2:

buf3:

After:

buf1: 13 14 # You’ll note that the end of "buf2" has spilled into "buf1".

buf2: 10 11 12 13 14 # This is a really nasty bug, which can be very hard to find.

buf3:

UNIX>

We will explore this phenomenon in great detail in CS360. For now, just remember to make sure that your sprintf()
buffers are big enough to hold the final strings. Typically, if I use sprintf() in C++, I overallocate the buffer, and
instantly copy the buffer to a C++ string right after the sprintf() call. That way, I’m not wasting memory, but I’m
not exposing myself memory bugs like the one above.

Don’t mess with the bytes that c str() returns, #2.

Students hate memory allocation, because it’s a pain, and many languages let them get away without doing it.
Therefore, I have seen students try to use sprintf() to create a string without allocating a buffer for the sprintf()
call (this is in src/bad c str 2.cpp):

#include <string >

#include <cstdio >

#include <cstdlib >

#include <iostream >

using namespace std;

/* This is a program where you have sprintf () write bytes into

a buffer that may or may not have been allocated. The

typecast statement is a good sign that you’re doing something

wrong here. Without the typecast statement , the compiler won’t

compile this code , because you shouldn ’t be attempting to write

into the bytes pointed to by c_str (). */

int main()

{

string s;

sprintf ((char *) s.c_str(), "%d", 5);

cout << s << endl;

return 0;

}

10
Copyright © 2023, James S. Plank. All rights reserved.

https://web.eecs.utk.edu/~jplank/plank/classes/cs302/Notes/Sprintf/src/bad_c_str_2.cpp

This is a disaster waiting to happen, because the c++ string doesn’t know what’s going on: It may or may not
have allocated enough memory in its underlying string. Moreover, when you do the sprintf() call, the rest of the
c++ string (e.g. the size field) doesn’t know what has happened. When I run this, it prints nothing. When you
want to use sprintf(), you need to allocate the buffer yourself, and make sure that it’s big enough. Below (in
src/good c str 2.cpp), we only need two characters for the buffer (for the ’5’ and the null character), but we use a
ten-character buffer to be safe:

#include <string >

#include <cstdio >

#include <cstdlib >

#include <iostream >

using namespace std;

int main()

{

string s;

char buf [10];

sprintf(buf , "%d", 5);

s = buf;

cout << s << endl;

}

sscanf()

Sscanf() does the opposite of sprintf(). It takes a C-style string as its first argument, and then a format string like
sprintf(), and then it attempts to ”read” from the first string, converting what it has read into the proper data types.
The variables into which it ”reads” must be specified as pointers. Let’s look at an example (in src/sscanf1.cpp):

#include <string >

#include <cstdio >

#include <cstdlib >

#include <iostream >

using namespace std;

/* Read the integer 100 from the string "100" using sscanf (). */

int main()

{

string s;

int i;

s = "100";

sscanf(s.c_str (), "%d", &i);

printf("i = %d\n", i);

return 0;

}

11
Copyright © 2023, James S. Plank. All rights reserved.

https://web.eecs.utk.edu/~jplank/plank/classes/cs302/Notes/Sprintf/src/good_c_str_2.cpp
https://web.eecs.utk.edu/~jplank/plank/classes/cs302/Notes/Sprintf/src/sscanf1.cpp

This ”reads” the string s, and converts it to an integer i, which it then prints:

UNIX> make bin/sscanf1

g++ -std=c++11 -Wall -Wextra -o bin/sscanf1 src/sscanf1.cpp

UNIX> bin/sscanf1

i = 100

UNIX>

You can specify multiple inputs to read, and sscanf() will return the number of items that it read successfully. The
program below (src/sscanf2.cpp) reads a line of text, and then tries to interpret that line as a double, followed by a
space, and an int. It then prints out how many ”matches” it made, the double and the int.

#include <string >

#include <cstdio >

#include <cstdlib >

#include <iostream >

using namespace std;

/* This program reads a line of text with getline (), and then

uses sscanf () which attempts to read the string as a double ,

followed by a space , and an integer. The number of correct

"matches" is returned from sscanf (). This program prints the

number of matches , and then the double and integer. If sscanf ()

was unsuccessful with a conversion , then the double and/or

integer will remain as uninitialized variables. */

int main()

{

string s;

int i, n;

double d;

getline(cin , s);

n = sscanf(s.c_str(), "%lf %d", &d, &i);

printf("n = %d. d = %lf. i = %d\n\n", n, d, i);

return 0;

}

Here it is running on a variety of inputs. Make sure you understand all of these outputs. In particular, if it can’t
match the initial double, then it won’t match the integer, ever:

12
Copyright © 2023, James S. Plank. All rights reserved.

https://web.eecs.utk.edu/~jplank/plank/classes/cs302/Notes/Sprintf/src/sscanf2.cpp

UNIX> make bin/sscanf2

g++ -std=c++11 -Wall -Wextra -o bin/sscanf2 src/sscanf2.cpp

UNIX> echo 10.5 5 | bin/sscanf2

n = 2. d = 10.500000. i = 5

UNIX> echo 10.5 Fred | bin/sscanf2

n = 1. d = 10.500000. i = 0

UNIX> echo Fred 5 | bin/sscanf2

n = 0. d = 0.000000. i = 0 # Since it doesn’t match the initial double,

it won’t match the integer either.

UNIX> echo 10.5xyz 55 | bin/sscanf2

n = 1. d = 10.500000. i = 0

UNIX> echo go vols | bin/sscanf2

n = 0. d = 0.000000. i = 0

UNIX>

Your input fields don’t have to be separated by spaces. The following program reads lines of text, which are in the
format ”h:m:s”. (in src/sscanf3.cpp):

#include <string >

#include <cstdio >

#include <cstdlib >

#include <iostream >

using namespace std;

int main()

{

string l;

int h, m, s, n;

double d;

getline(cin , l);

n = sscanf(l.c_str(), "%d:%d:%d", &h, &m, &s);

printf("n = %d. h = %d. m = %d. s = %d.\n", n, h, m, s);

return 0;

}

That may well be handy for lab 1.....

UNIX> g++ -std=c++11 sscanf3.cpp

UNIX> echo ’55:33:22’ | ./a.out

n = 3. h = 55. m = 33. s = 22.

UNIX>

But Dr. Plank, why is it ok to use c str() in sscanf(), but not in sprintf()?

It’s ok because sscanf() does not modify the bytes in its first argument. It merely reads them, so our code is fine.
On the other hand, sprintf() does modify the bytes of its first argument, and that’s why we shouldn’t use it.

13
Copyright © 2023, James S. Plank. All rights reserved.

https://web.eecs.utk.edu/~jplank/plank/classes/cs302/Notes/Sprintf/src/sscanf3.cpp

What about snprintf() – doesn’t that solve the problems with sprintf?

There is an alternative to sprintf() named snprintf(), and some compilers have started to emit a warning when
they see sprintf(), advocating that you use snprintf() instead. With snprintf(), you pass the size of the buffer
as an argument. For example, src/snprintf.cpp is identical to src/sprintf1.cpp, except it uses snprintf() instead of
sprintf():

// ...

snprintf(buf , 100, "%d %d %d %d %d", i, i+1, i+2, i+3, i+4);

// ...

It’s a good habit to get into, because it will catch some bugs which can otherwise be disastrous and hard to
find. It’s not a panacea, though, because you can give it an incorrect size, and it will still compile and run in a buggy
fashion. I won’t demonstrate that here, so just take my word for it. You’ll typically see me use sprintf() instead
of snprintf(), partially because of habit, and partially because I feel like I feel it’s unneccessary, so long as you are
programming carefully.

Q & A: What if there is a string before the time?

Please see pdf/2022-01-25-Piazza.pdf:
I have a question about sscanf() lecture.

On the lecture note, there is a code that reads the format of ”h:m:s”

sscanf(l.c_str(), "%d:%d:%d", &h, &m, &s);

And I was wondering why it cannot store h, m, and s when the input is ”abcdef 12:34:56” and how can I make it
work?

Thank you!

The Instructors’ Answer - where instructors collectively construct a single answer

If s = ”abcdef 12:34:56”, and you want to read the ”12:34:56” part, then there are two avenues to go down.

1. Use a C++ stringstream, or perhaps the find() and substr() methods of C++ strings to isolate the ”12:23:56”
into it’s own C++ string. Then use the sscanf() call above. This is what I’d recommend.

2. (Not recommended, but I’m putting it here in case someone recommends it). If you know that there is a single
string in front of the time, and you know how big it is, then you can do:

sscanf(l.c_str(), "%s %d:%d:%d", buf, &h, &m, &s);

but will need to be a c-style array of bytes that is big enough to hold the initial string (plus the NULL character).
The reason I don’t recommend this is that if you mess up, and buf is too small, you open yourself up to memory
corruption and buffer overflow attacks. You’ll learn more about that in CS360. – JP

Copyright (c) 2023, James S. Plank

14
Copyright © 2023, James S. Plank. All rights reserved.

https://web.eecs.utk.edu/~jplank/plank/classes/cs302/Notes/Sprintf/src/snprintf.cpp
https://web.eecs.utk.edu/~jplank/plank/classes/cs302/Notes/Sprintf/src/sprintf1.cpp
https://web.eecs.utk.edu/~jplank/plank/classes/cs302/Notes/Sprintf/pdf/2022-01-25-Piazza.pdf

