
 CS302 Final 2020

 Questions
 The exam was on Canvas, and I used question banks for a lot of questions, so I won't
 have the exact exam here, but | will describe it:

 Questions 1-6
 These were Big-O questions, worth two points each.

 ● Let G be a weighted, directed graph with X nodes and Y edges. What is the Big-O
 running time of finding the minimum-weight path between two arbitrary nodes in
 the graph?

 ● Let G be a weighted, undirected graph with X nodes and Y edges. What is the
 Big-O running time of finding a minimum spanning tree of the graph?

 ● Let G be an unweighted, undirected graph with X nodes and Y edges. What is the
 Big-O running time of finding the shortest path between two arbitrary nodes in
 the graph?

 ● Let G be a weighted, directed graph with X nodes and Y edges. What is the Big-O
 running time of determining whether two nodes in the graph are connected?

 ● Let G be a weighted, directed acyclic graph with X nodes and Y edges. What is
 the Big-O running time of determining the minimum weight path between two
 arbitrary nodes in the graph?

 ● Let G be a weighted, directed graph with X nodes and Y edges. What is the Big-O
 running time of finding an augmenting path through the graph when
 implementing network flow with the Edmonds-Karp algorithm?

 1

 CS302 Final 2020

 Questions 7-12
 These were true-false questions on NP-completeness, worth 1 point each.

 ● If G is an NP Complete problem, then G may be solved in exponential time with
 enumeration.

 ● If G is an NP Complete problem, then G must be framed as a "yes/no" question,
 and a "yes" answer must be verifiable in polynomial time.

 ● Let G be an NP Complete problem. If you can solve G in time O(T), then you can
 solve 3-SAT in time O(Tp), where p is a polynomial of the input size of G and
 3-SAT.

 ● If G is an NP Complete problem, then G may not be solved in polynomial time.
 ● If G is an NP Complete problem, then you prove that G is NP-Complete by taking

 an instance of G, mapping it to a known NP-Complete problem like 3-SAT in
 polynomial time, and showing that if you can solve 3-SAT in polynomial time, then
 you can solve G in polynomial time.

 ● If G is an NP Complete problem, then G must be framed as a "yes/no" question,
 and a "no" answer must be verifiable in polynomial time.

 Questions 13 and 14
 1. These were "identify the sorting algorithm" questions, randomly chosen from a
 question bank. Four points each.

 Suppose I am sorting the following vector:
 69 33 22 77 56 3 79 55 25 14

 After two passes of my sorting algorithm, the vector is:
 22 33 69 77 56 3 79 55 25 14

 Which sorting algorithm am I using?

 2. Suppose I am sorting the following vector:
 73 61 20 84 81 37 57 88 77 1

 After two passes of my sorting algorithm, the vector is:
 1 20 61 84 81 37 57 88 77 73

 Which sorting algorithm am I using?

 2

 CS302 Final 2020

 Question 15
 Quicksort Pivot Selection - 4 points .
 Suppose I am sorting the following vector using quicksort:
 43 24 35 15 90 98 74 47 89 66 54

 If I am using the median-of-three pivot selection algorithm, what is the pivot?

 Question 16
 Quicksort Partition - 8 points .
 You are sorting the following string using quicksort (those are lower-case L's, not ones):
 l p g s v l f f f e b w l

 If you use the first character as a pivot, what will the string be right before you make the
 first recursive call?

 Question 17
 Minimum Spanning Tree - 8 points .

 The following list specifies the edges in an undirected, weighted graph with 10 nodes
 labeled A through J. In the answer box, please enter the edges in the minimum spanning
 tree of the graph. Specify an edge from X to Y as "XY" (but no quotes). You can separate
 your edges with spaces or put them on separate lines. Please don't put anything else in
 your answer except the edges.

 Edge: AF -- weight 1
 Edge: AJ -- weight 2
 Edge: EH -- weight 4
 Edge: FJ -- weight 5
 Edge: EG -- weight 6
 Edge: GH -- weight 8
 Edge: EF -- weight 9
 Edge: BI -- weight 10
 Edge: CD -- weight 12
 Edge: GJ -- weight 14
 Edge: FH -- weight 15
 Edge: AE -- weight 17
 Edge: HJ -- weight 18
 Edge: AG -- weight 20

 3

 CS302 Final 2020

 Edge: EJ -- weight 21
 Edge: CI -- weight 22
 Edge: BD -- weight 23
 Edge: FG -- weight 25
 Edge: AH -- weight 26
 Edge: BC -- weight 27
 Edge: DI -- weight 29
 Edge: DF -- weight 31
 Edge: AI -- weight 32
 Edge: DE -- weight 33
 Edge: HI -- weight 34
 Edge: CE -- weight 36
 Edge: AC -- weight 37
 Edge: AD -- weight 38
 Edge: FI -- weight 39
 Edge: EI -- weight 40

 Question 18
 Topological Sort - 8 points .

 Below is a specification of a directed, unweighted graph using adjacency lists. In the
 answer box, please give a listing of the nodes in the order of a valid topological sort.
 There may be many valid answers -- you only have to give one valid answer. Please
 answer by simply listing the nodes. You don't need spaces or commas or newlines
 between the nodes, but it's ok to do to. In fact, if the browser lets you, I'd recommend
 cutting and pasting the adjacency lists into your answer and then working through it
 from there. But that's me.

 Please don't put any other stray stuff like numbers or comments in your answer.
 Remember that you can resize your entry window if it makes your life easier.

 A: D C
 B: D H A
 C:
 D:
 E: C
 F: D B
 G: H C B
 H:
 I: D H C A
 J: A I G E F

 4

 CS302 Final 2020

 Questions 19-20
 Network Flow - 6 points each .

 You are looking to find the max flow and min cut in the following graph:

 In the box below, enter the maximum flow on the first line (just a number). And then
 enter the minimum cut on the next lines, one edge per line. No spaces; no punctuation.
 Use, for example, SA to represent the edge from S to A.

 5

 CS302 Final 2020

 Question 21
 Dijkstra's Algorithm - 7 points .

 You are working with a directed, weighted graph with the following adjacency matrix:

 A B C D E F G H
 A | 0 67 57 44 59 11 42 36
 B | 68 0 50 13 2 67 55 30
 C | 53 62 0 3 49 34 5 23
 D | 55 18 46 0 13 25 30 26
 E | 27 57 23 69 0 42 8 55
 F | 59 50 61 65 45 0 66 39
 G | 44 2 66 34 44 61 0 60
 H | 63 25 38 10 68 11 18 0

 You are in the middle of doing the shortest path calculation with Dijkstra's algorithms.
 You are maintaining a vector of the best known shortest paths, and the multimap that is
 central to Dijkstra's algorithm. The values of these data structures are as follows:

 A B C D E F G H
 Best: 68 0 50 13 2 67 55 30

 Multimap:

 key: 2 val: E
 key: 13 val: D
 key: 30 val: H
 key: 50 val: C
 key: 55 val: G
 key: 67 val: F
 key: 68 val: A

 Your job is to tell me what the state of these two data structures is after the next pass
 of Dijkstra's algorithm.

 6

 CS302 Final 2020

 Question 22
 Programming BFS - 12 points :

 The GF(64K) graph is an unweighted, directed graph, where every node is labeled by a
 number from 0 to 0xffff. Every node with a label of i has two outgoing edges:
 There is an edge to (i+1)%0x10000 .

 If i is less than 0x8000, then there is an edge to i << 1 ; otherwise, there is an edge to (i <<
 1) ^ 0x1100b . (in C++, the carat is XOR). You'll note that in either case, the edge is to a
 number that is less than or equal to 0xffff.

 The graph does have two multi-edges. (Node 1 has two edges to 2, and Node 0xf006
 has two edges to 0xf007). It's not really important, but I mention it in case you noticed it
 and were confused.

 Write a procedure with the following prototype:

 int shortest_path(int from, int to);

 You don't have to error check -- you will be guaranteed that from and to are numbers
 between 0 and 0xffff. Your program should return the length of the shortest path from
 from to to in the GF(64K) graph. You'll note that there is always a path between every
 pair of nodes, so you don't need to worry about from and to being disconnected.

 7

 CS302 Final 2020

 Question 23
 Programming DP - 15 points .

 The following is a definition for a B-String :
 ● The following are B-Strings : {}, [], ()
 ● { T } is a B-String if and only if T is a B-String that does not start with ' { '.
 ● (T) is a B-String if and only if T is a B-String that does not start with ' ('.
 ● [T] is a B-String if and only if T is a B-String that does not start with ' ['.
 ● { TS } is a B-String if and only if T and S are B-Strings .
 ● (TS) is a B-String if and only if T and S are B-Strings .
 ● [TS] is a B-String if and only if T and S are B-Strings .

 So, for example, here are some B-Strings:
 []
 [()]
 [[][]]
 [([]({}))]

 These are not B-strings :
 [][] -- You can only have two concatenated strings inside a {, [or (
 [()()()] -- You can't have three strings inside a []
 [[]] -- If you have one string inside a [], it cannot start with [

 Write a dynamic program (obviously, in C++) that reads n from standard input, and prints
 the total number of B-Strings that are n characters in length. You only need to go to "step
 2" in the four steps of dynamic programming.

 Some examples:

 UNIX> echo 1 | a.out
 0
 UNIX> echo 2 | a.out
 3
 UNIX> echo 3 | a.out
 0
 UNIX> echo 4 | a.out
 6 # These are ([]), ({}), [()], [{}], {[]}, {()}
 UNIX> echo 6 | a.out
 39 # 13 begin with [, 13 begin with {, 13 begin with (
 UNIX>

 8

 CS302 Final 2020

 Please feel free to cut and paste the following to get you started:

 #include <string>
 #include <vector>
 #include <iostream>
 using namespace std;

 class Bstring {
 public:

 vector < vector <long long> > Cache;
 long long bs(int len, int potential_starting_chars);

 };

 long long Bstring::bs(int len, int psc) {
 // Do base cases.
 // Create the cache if you need to.
 // Check the cache
 // You have two cases to count: strings like { T }, and strings
 like { TS }.
 }

 int main() {
 int len;
 Bstring b;

 cin >> len;
 cout << b.bs(len, 3) << endl;
 return 0;

 }

 9

