
Clicker Question on Doing DFS with a Stack 

In the following picture, T give you the adjacency lists of an undirected graph, plus a suggested layout of the nodes. 

Adjacency Lists: 

©@ © ©® ® »rox 
B:{J,K} 
C:{J,G 

® ® ® o 
F:{K N} 

® ® ricey 
K:{B,F, G,A} 

‘ M: {N} 
N:{F, M} 

Here are two exam questions that I could see myself asking: 

1. Suppose I call DFS(J). Which node is visited first: K or B? (Hint: It's not a bad idea to draw the graph here.) 

2. Suppose I print out the name of each node, the first time that it is visited after I call DFS(J). What will be printed (print a 10-character word, with no 
spaces, like "TBFNCKMGAD")? I suggest that you maintain a stack and a "visited" vector, and then instead of doing recursion, you push nodes from the 
adjacency list in reverse order. You don't even have to draw the graph for this problem.



Answer to the Clicker Questions 

Here's the graph with the edges drawn: 

Adjacency Lists: 

1. Suppose I call DFS(J). Which node is visited first: K or B? 

Answer: The simplest thing is to draw in the edges as above. Then, you can see from adjacency lists that J will visit C first. And you can see that the DFS will wind its way from C to B via 
node K. So the answer is K. See the DFS below if you need 1o walk through it more slowly. 

2. Suppose T print out the name of each node, the first time that it is visited after T call DFS(J). What will be printed (print a 10-character word, with no spaces, like "TBENCKMGAD")? T 
suggest that you maintain a stack and a "visited" vector, and then instead of doing recursion, you push nodes from the adjacency list in reverse order. You don't even have to draw the 
graph for this problem. 

Answer: The cleanest way to work through the DFS is o maintain a stack, and we'll push our children on in reverse order. We'll also mainiain a vector of visited nodes. You can see the 
process in the video of class: 

The answer is JOCGKBFNMAD.


