Here the a summary of a topcoder problem:	Examples:
 You are given a vector of strings called t. Each string in t is the same size, and is composed of the characters '0' and '1'. t has at most 10 elements, and each string has at most 10 characters. t is considered "Nice" if there exist strings x and y such that: x.size() equals t.size(). y.size() equals t[0].size(). Both x and y are composed of '1' and '0'. If we consider all of the characters in t, x and y to be numbers, then for all i and j, t[i] [j] is equal to x[i] XOR y[j]. Return "Nice" if t is Nice and "Not nice" otherwise. 	<pre># t Answer </pre>
Question 1	Question 2:
 Which type of enumeration can solve this problem? Just put the letter of the answer into the TurningPoint text box: A: Div-Mod Enumeration. B: Power Set Enumeration. C: <i>n</i>-choose-k. D: Permutations. 	If t.size () is <i>n</i> , and t[0].size () is <i>m</i> , then what is the running time of the enumeration?

Answers to the Clicker Questions

Question 1: You will do two enumerations of strings composed of '0' and '1' -- one for x and one for y. These are power set enumerations: **B**.

Question 2: Enumerating **x** is $O(2^n)$, and enumerating **y** is $O(2^m)$, so the answer is $O(2^{n+m})$, which can also be written $O(2^{n*} 2^m)$.