
Here the a summary of a topcoder problem:

You are given a vector of strings
called t.
Each string in t is the same size, and
is composed of the characters '0' and
'1'.
t has at most 10 elements, and each
string has at most 10 characters.
t is considered "Nice" if there exist
strings x and y such that:

x.size() equals t.size().
y.size() equals t[0].size().
Both x and y are composed of
'1' and '0'.
If we consider all of the
characters in t, x and y to be
numbers, then for all i and j, t[i]
[j] is equal to x[i] XOR y[j].

Return "Nice" if t is Nice and "Not
nice" otherwise.

Examples:

t Answer
- -------- ---------------------------------
0 { "01", "Nice" -- x = y = "10" works.
 "10" } So does x = y = "01"

1 { "01", "Not Nice"
 "11" } Trust me, you can't do it.

2 {"0100", "Nice".
 "1011", x = "101" and y = "1011" works.
 "0100"}

Question 1

Which type of enumeration can solve this
problem? Just put the letter of the answer
into the TurningPoint text box:

A: Div-Mod Enumeration.
B: Power Set Enumeration.
C: n-choose-k.
D: Permutations.

Question 2:

If t.size() is n, and t[0].size() is m, then what is the running
time of the enumeration?

Answers to the Clicker Questions

Question 1: You will do two enumerations of strings composed of '0' and '1' -- one for x and one for y. These are
power set enumerations: B.

Question 2: Enumerating x is O(2n), and enumerating y is O(2m), so the answer is O(2n+m), which can also be
written O(2n* 2m).

