
Question 1: What is the output of the following program?

#include <iostream>
using namespace std;

int s(int n)
{
 if (n == 0) return 0;
 return n + s(n-1);
}

int main()
{
 cout << s(10) << endl;
}

Question 2: What is the running time of s(n)?

(In these questions, use the carat symbol (^) for exponentiation). Question 3: What is the output of the following
program?

#include <iostream>
using namespace std;

string t(string v)
{
 string tmp;
 if (v.size() == 0) return "";
 tmp.push_back(v[0]);
 return t(v.substr(1)) + tmp;
}

int main()
{
 cout << t("Fred") << endl;
}

Question 4: What is the running time of t(v), where n = v.size()?

Question 5: What would be the running time of t(v) if v were a reference parameter?

Answers to the Clicker Questions

Question 1

s(10) returns 10 + s(9).
s(9) returns 9 + s(8).
s(8) returns 8 + s(7).
And so on
s(0) returns 0

So, s(n) returns n + (n-1) + .. + 2 + 1 , which is n(n+1)/2. The answer is 55.

Question 2

Answer: It makes n recursive calls, and each call does O(1) work (besides the recursion). So the answer is O(n).

Question 3

s("Fred") sets tmp to "F" and calls s("red"). It returns s("red") + "F".
s("red") sets tmp to "r" and calls s("ed"). It returns s("ed") + "r".
s("ed") sets tmp to "e" and calls s("d"). It returns s("d") + "e".
s("d") sets tmp to "d" and calls s(""). It returns s("") + "d".
s("") returns "".
So, s("d") returns "d".
So, s("ed") returns "de".
So, s("red") returns "der".
So, s("Fred") returns "derF".

In other words it reverses the string: "derF".

Question 4

Answer: It makes n recursive calls; However each recursive call creates a substring of size (n-1) and then copies
it when calling s() on the substring. So the running time of this is n + (n-1) + (n-2) + ... + 2 + 1, which is O(n2).

Question 5

With the reference parameter, a copy of the substring is no longer made. However, making the substring still
takes O(n) work, so the running time is still O(n + (n-1) + (n-2) + ... + 2 + 1), which is still O(n2).

