
Question 1: You are reading numbers from standard input, and you are guaranteed that each number that you
read is either bigger than all of the previous numbers or smaller than all of the previous numbers. Like [5, 6, 7,
3, 9, 2, 10, 0].

Suppose you want to print the numbers sorted in ascending order. What is the best data structure from the STL
that you should use for reading and sorting the numbers?

Question 2: What is the big-O running time for the answer in Question 1 if there are n numbers?

Question 3: What is the
output of the following
program:

#include <cstdio>
using namespace std;

int main()
{
 int a;

 a = 263;
 printf("0x%x\n", a);
 return 0;
}

Question 4: What is the output of
the following program:

#include <cstdio>
using namespace std;

int main()
{
 int a, b;

 a = 263;
 b = 3;
 printf("0x%x\n", a & b);
 return 0;
}

Question 5: What is the output of
the following program:

#include <cstdio>
using namespace std;

int main()
{
 int a, b;

 a = 263;
 b = 3;
 printf("0x%x\n", a ^ b);
 return 0;
}

Answers to the clicker questions

Question 1: A deque -- you can push_front the small ones and push_back the large ones, and the deque will be
sorted. Each operation is O(1).

I would give credit to a list -- you can perform the same operations on a list and have each operation be O(1), but
the list is slower than a deque (and less memory efficient as well).

You could do this with two vectors, but that is convoluted, so you'd need to explain how you're doing it.

Sets and maps will work, but they are slower O(n log n).

Question 2: O(n).

Question 3: 0x107. 256 + 7.

Question 4: 0x3. Here's the output of bin/ba_helper from the "Bits" lecture notes, with a bunch of leading
zeroes and spaces trimmed:

Operator: AND
A: 263 0x0107 000100000111
B: 3 0x0003 000000000011
C: 3 0x0003 000000000011

Question 5: 0x104.

Operator: XOR
A: 263 0x0107 000100000111
B: 3 0x0003 000000000011
C: 260 0x0104 000100000100

