
Matrix Program
COSC-230

Assignment

Stephen Marz

• Assignment

• Requirements

• Plagiarism

• Submission

Topics

• You will be writing four assembly functions that control

the scaling and translation of a 3D matrix and vector.

Matrix scale(const Matrix &orig,
float sx, float sy, float sz);

Matrix translate(const Matrix &orig,
float tx, float ty, float tz);

Vector mul(const Matrix &m, const Vector &v);

Vector normalize(const Vector &v);

3

Task

// A 1x4 vector
struct Vector {

float v[4];
};

// A 4x4 matrix
struct Matrix {

float m[16];
};

4

C++ Structures

• Scaling modifies the "diagonal" of a 4x4 matrix to scale

pixels. The scaling is a coefficient of the vectors passed

through it.

5

Scaling

Matrix scale(const Matrix &orig,
float sx, float sy, float sz)

{
Matrix ret = orig;

ret.m[0] *= sx;
ret.m[5] *= sy;
ret.m[10] *= sz;

return ret;
}

6

C++ Scale

• Translation moves the vectors from <x,y,z> to <x',y',z'>.

7

Translation

Matrix translate(const Matrix &orig,
float tx, float ty, float tz)

{
Matrix ret = orig;

ret.m[3] += tx;
ret.m[7] += ty;
ret.m[11] += tz;

return ret;
}

8

C++ Translate

Vector mul(const Matrix &m, const Vector &v)
{

Vector ret;
for (int row = 0;row < 4;row++) {

ret.v[row] = 0.0F;
for (int col = 0;col < 4;col++) {

ret.v[row] += v.v[row] *
m.m[4 * row + col];

}
}
return ret;

}

9

C++ Matrix Multiply

• Normalization scales all coordinates of a vector between
[-1.0..1.0] while maintaining relative scale between the
coordinates.

• Normalization uses the Pythagorean theorem c2 = a2 +
b2 to calculate the normalization unit.

10

Normalization

Vector norm(const Vector &v)
{

Vector ret;
float unit = 0;
for (int i = 0;i < 4;i++) {

unit += v.v[i] * v.v[i];
}
unit = sqrt(unit);
for (int i = 0;i < 4;i++) {

ret.v[i] = v.v[i] / unit;
}
return ret;

}

11

C++ Normalization

• You must properly use the stack and ABI calling conventions.

• You must use two nested for loops for the mul function.

• Use shifting when scaling by powers of two.

• Use numeric labels for your loops.

• Use the ABI names for registers

• ABI names: t0, a0, s0, etc.

• Index names: x10, x15, x20, etc.

12

Requirements

• This is an individual assignment.

• You must NOT be able to see anyone else's code.

• Do NOT send your code and do not accept someone sending you code.

• Do NOT use any online source, such as Chegg, Stackoverflow, etc.

• You MAY use the online notes that I have created for you.

• You MUST cite anyone with whom you worked with, including classmates, students in
another class, professors, and TAs.
• Please note that even if you cite another student, professor, or TA, it does NOT mean

you may share code.

• If you cannot attest to the truthfulness of not cheating using the bullets above. DO
NOT submit your code. It is better just to get a 0 here and let it be done. If you
proceed with copied code, the office of Student Conduct and Community Standards
(SCCS) will become involved.

13

Plagiarism Policy

• Make sure your code compiles and assembles with the

following command.

• Replace lab with the name of your lab.

• Make sure you have comments in your code, including a header

and inline comments.

• Submit only your .S file.

14

Submission

~> riscv64-unknown-linux-gnu-g++ -o lab lab.cpp lab.S
~> ./lab

• Assignment

• Requirements

• Plagiarism

• Submission

Topics

Matrix Program

Stephen Marz

COSC-230

Assignment

	Intro
	Slide 1: Matrix Program
	Slide 2: Topics

	Assignment
	Slide 3: Task
	Slide 4: C++ Structures
	Slide 5: Scaling
	Slide 6: C++ Scale
	Slide 7: Translation
	Slide 8: C++ Translate
	Slide 9: C++ Matrix Multiply
	Slide 10: Normalization
	Slide 11: C++ Normalization

	Requirements
	Slide 12: Requirements

	Plagiarism
	Slide 13: Plagiarism Policy

	Submission
	Slide 14: Submission

	Conclusion
	Slide 15: Topics
	Slide 16: Matrix Program

